FINAL DRAFT INTERNATIONAL STANDARD (FDIS)

PROJECT NUMBER:
IEC 61537 ED3

DATE OF CIRCULATION:
2022-11-11

CLOSING DATE FOR VOTING:
2022-12-23

SUPERSEDES DOCUMENTS:
23A/977/CDV, 23A/993A/RVC

IEC SC 23A : CABLE MANAGEMENT SYSTEMS

SECRETARIAT:
United Kingdom

SECRETARY:
Mr Rajeev Vagdia

OF INTEREST TO THE FOLLOWING COMMITTEES:

FUNCTIONS CONCERNED:
☐ EMC ☐ ENVIRONMENT ☐ QUALITY ASSURANCE ☒ SAFETY

☐ SUBMITTED FOR CENELEC PARALLEL VOTING

Attention IEC-CENELEC parallel voting

The attention of IEC National Committees, members of CENELEC, is drawn to the fact that this Final Draft International Standard (FDIS) is submitted for parallel voting.

The CENELEC members are invited to vote through the CENELEC online voting system.

☐ NOT SUBMITTED FOR CENELEC PARALLEL VOTING

This document is a draft distributed for approval. It may not be referred to as an International Standard until published as such.

In addition to their evaluation as being acceptable for industrial, technological, commercial and user purposes, Final Draft International Standards may on occasion have to be considered in the light of their potential to become standards to which reference may be made in national regulations.

Recipients of this document are invited to submit, with their comments, notification of any relevant patent rights of which they are aware and to provide supporting documentation.

TITLE:
Cable management - Cable tray systems and cable ladder systems

PROPOSED STABILITY DATE: 2026

NOTE FROM TC/SC OFFICERS:

Copyright © 2022 International Electrotechnical Commission, IEC. All rights reserved. It is permitted to download this electronic file, to make a copy and to print out the content for the sole purpose of preparing National Committee positions. You may not copy or "mirror" the file or printed version of the document, or any part of it, for any other purpose without permission in writing from IEC.
CONTENTS

FOREWORD ... 8

1 Scope .. 10

2 Normative references ... 10

3 Terms and definitions ... 11

4 General requirements .. 15

5 General conditions for tests .. 15

6 Classification ... 16

6.1 According to material .. 16

6.2 According to resistance to flame propagation .. 16

6.3 According to electrical continuity characteristics ... 16

6.4 According to electrical conductivity .. 17

6.5 According to resistance against corrosion ... 17

6.5.1 General .. 17

6.5.2 Non-metallic system component ... 17

6.5.3 Metallic system component .. 17

6.6 According to temperature .. 21

6.6.1 Minimum temperature for the system component as given in Table 3 21

6.6.2 Maximum temperature for the system component as given in Table 4 21

6.7 According to the perforation in the base area of the cable tray length as given in Table 5 .. 21

6.8 According to the free base area of mesh cable tray length or cable ladder length as given in Table 6 .. 22

6.9 According to impact resistance of non-metallic and composite systems 22

7 Marking and documentation .. 22

7.1 Marking .. 22

7.1.1 General .. 22

7.1.2 Durability of marking .. 23

7.2 Documentation ... 24

8 Dimensions ... 25

9 Construction .. 26

10 Mechanical properties ... 27

10.1 Mechanical strength ... 27

10.2 SWL test procedure .. 28

10.2.1 General .. 28

10.2.2 General procedure .. 28

10.2.3 Alternative test conditions for 10.2.2 ... 37

10.3 Test for SWL of cable tray lengths and cable ladder lengths mounted in the horizontal plane running horizontally on multiple spans .. 38

10.3.1 General .. 38

10.3.2 Test type I ... 38

10.3.3 Test type II .. 39

10.3.4 Test type III ... 40

10.3.5 Test type IV ... 41

10.4 Test for SWL of cable tray systems and cable ladder systems mounted in the horizontal plane running horizontally on a single span installation .. 42
10.5 Test for SWL of cable tray system and cable ladder system mounted in the vertical plane running horizontally ... 43
10.5.1 Multiple span test .. 43
10.5.2 Single span test ... 46
10.6 Test for SWL of cable tray system and cable ladder system mounted in the vertical plane running vertically ... 52
10.7 Test for SWL of cable tray fittings and cable ladder fittings mounted in the horizontal plane running horizontally ... 57
10.7.1 General .. 57
10.7.2 Test for SWL of 90° bend .. 58
10.7.3 Test for SWL of equal tee and equal cross .. 58
10.8 Test for SWL of support devices ... 60
10.8.1 General .. 60
10.8.2 Test for SWL of cantilever brackets .. 60
10.8.3 Test for SWL of pendants ceiling mounted ... 77
10.9 Test for impact resistance .. 95
11 Electrical properties ... 99
11.1 Electrical continuity .. 99
11.1.1 General .. 99
11.1.2 Electrical impedance tests .. 99
11.2 Electrical non-conductivity .. 105
11.2.1 General .. 105
11.2.2 Preparation of samples ... 106
11.2.3 Preparation of electrodes .. 106
11.2.4 Humidity treatment of samples ... 106
11.2.5 Mounting of electrodes on samples .. 106
11.2.6 Measurement of surface resistance .. 107
11.2.7 Calculation of surface resistivity ... 107
12 Thermal properties .. 108
13 Fire hazards .. 108
13.1 Reaction to fire .. 108
13.1.1 Initiation of fire .. 108
13.1.2 Contribution to fire .. 108
13.1.3 Spread of fire ... 108
13.1.4 Additional reaction to fire characteristics .. 111
13.2 Resistance to fire .. 112
14 External influences .. 112
14.1 Resistance against environmental forces ... 112
14.2 Resistance against corrosion ... 112
14.2.1 General .. 112
14.2.2 Non-metallic system components .. 113
14.2.3 System components made of mild steel with metallic coating or stainless steel ... 113
14.2.4 Salt spray test ... 114
14.2.5 System components made from aluminium alloys 114
14.2.6 System components made of steel with organic coating 114
15 Electromagnetic compatibility (EMC) .. 115
Annex A (informative) Sketches of typical types of cable tray lengths and cable ladder lengths .. 116
Annex B (informative) Sketches of typical support devices ... 118

Annex C (normative) Protective Earth (PE) function .. 121
C.1 General .. 121
C.2 Cable tray system or cable ladder system with electrical continuity characteristics and with PE function ... 121
C.2.1 Construction .. 121
C.2.2 Marking and documentation ... 122
C.2.3 Requirements for periodic inspection ... 122
C.2.4 Electrical properties .. 123
C.2.5 Validation test of the calculated equivalent copper cross-sectional area of the system ... 124

Annex D (normative) Methods of applying and distributing a UDL for SWL tests using load distribution plates ... 127
D.1 General .. 127
D.2 Dimensions of load distribution plates for cable tray and cable ladder mounted in the horizontal plane .. 127
D.3 Distribution of point loads across the width of cable tray, cable ladder and support ... 127
D.4 Distribution of point loads along the length of cable tray ... 128
D.5 Distribution of point loads along the length of the cable ladder .. 130

Annex E (informative) Typical methods of applying a UDL for SWL tests 132
E.1 UDL applied through a mechanical linkage ... 132
E.2 UDL applied through individual loads ... 133
E.3 UDL applied through load blocks .. 133

Annex F (xxx) Not Used .. 134

Annex G (informative) Example for clarification of permitted creep .. 135

Annex H (informative) Information for a safe installation of pendants with cantilever brackets ... 136

Annex I (informative) Summary of compliance checks .. 138

Annex J (normative) Compliance checks to be carried out for cable tray systems and cable ladder systems already complying with IEC 61537:2006 .. 140

Annex K (informative) Number of samples required for tests .. 142

Annex L (informative) Illustrative flow chart for the SWL tests .. 143
L.1 Lengths .. 143
L.2 Fittings ... 144
L.3 Supports ... 145
L.4 Cantilever brackets .. 146
L.5 Pendants for cantilever bracket ... 147
L.6 Centrally supported bracket ... 147
L.7 Trapeze supports ... 148

Annex M (normative) Application of a point load to a support .. 149

Bibliography ... 150

Figure 1 – Flame propagating symbol .. 22
Figure 2 – Piston for durability of marking test .. 23
Figure 3 – Safe working load test – General arrangement .. 31
Figure 4 – Load and temperature diagrams with respect to time for test 10.2.2.4 35
Figure 5 – Test type I .. 39
Figure 6 – Test type II ... 40
Figure 7 – Test type III .. 41
Figure 8 – Test type IV ... 41
Figure 9 – Safe working load for single span test ... 43
Figure 10 – Test conditions: Multi-span cable tray mounted in the vertical plane running horizontally .. 44
Figure 11 – Test conditions: Multi-span cable ladder mounted in the vertical plane running horizontally .. 45
Figure 12 – Test conditions: Single span cable tray mounted in the vertical plane running horizontally .. 47
Figure 13 – Test conditions: Single span cable ladder mounted in the vertical plane running horizontally .. 48
Figure 14 – Measurement example of the resultant deflection for Figure 10, Figure 11, Figure 12 and Figure 13 .. 49
Figure 15 – Load position for cable tray or cable ladder mounted in the vertical plane running horizontal .. 50
Figure 16 – Example of applying the test load for cable tray or cable ladder mounted in the vertical plane running horizontally ... 52
Figure 17 – Examples of test arrangements for systems mounted vertically running vertically ... 56
Figure 18 – Safe working load test for 90° bend .. 58
Figure 19 – Safe working load test for equal tee ... 59
Figure 20 – Safe working load test for equal cross .. 59
Figure 21 – Typical examples of length and position of the mid-line of fittings 60
Figure 22 – Test set-up for cantilever brackets intended for use with unspecified cable tray of widths at least 80 % of the useable length of the cantilever bracket .. 62
Figure 23 – Test set-up for cantilever brackets intended for use with unspecified cable tray of widths less than 80 % of the useable length of the cantilever bracket ... 63
Figure 24 – Test set-up for cantilever brackets intended for use with unspecified cable ladder systems ... 64
Figure 25 – Test set-up for cantilever brackets intended for use with a specified cable tray system ... 66
Figure 26 – Example of test set-up for cantilever brackets intended for use with a specified cable tray system – Positioning of load ... 67
Figure 27 – Test set-up for cantilever brackets intended for use with a specified cable ladder system only, or with both cable tray systems and cable ladder systems .. 68
Figure 28 – Example of test set-up for cantilever brackets intended for use with specified cable ladder systems .. 69
Figure 29 – Test set-up for cantilever brackets: end view showing measurement of deflection when the bracket twists .. 69
Figure 30 – Test set-up for cantilever brackets: end view showing alternative weight positioning .. 70
Figure 31 – Test set-up for cantilever brackets for use with unspecified cable tray mounted vertically running vertically with widths at least 80 % of the useable length of the cantilever bracket ... 71
Figure 32 – Test set-up for cantilever brackets for use with unspecified cable tray or cable ladder mounted vertically running vertically with widths less than 80 % of the useable length of the cantilever bracket ... 72
Figure 33 – Test set-up for cantilever brackets for use with unspecified cable ladder mounted vertically running vertically with widths at least 80 % of the useable length of the cantilever bracket .. 73
Figure 34 – Example of test arrangement on cantilever bracket with a cable tray length 75
Figure 35 – Example of test arrangement on cantilever bracket with a cable ladder length .. 77
Figure 36 – Test set-up – Pendants for cantilever brackets ... 79
Figure 37 – Example test set-up for pendant with centrally supported bracket for evenly and unevenly loaded specified cable ladder systems ... 81
Figure 38 – Example test set-up for pendant with centrally supported bracket for evenly and unevenly loaded specified cable tray systems .. 82
Figure 39 – Load positioning for centrally supported bracket for unevenly loaded specified cable tray or cable ladder systems ... 83
Figure 40 – Deflection of a centrally supported bracket for unevenly loaded specified cable tray or cable ladder systems ... 84
Figure 41 – Load positioning and deflection for a centrally supported bracket for evenly loaded specified cable tray or cable ladder systems .. 85
Figure 42 – Test set up for unevenly loaded centrally supported brackets intended for unspecified use .. 87
Figure 43 – Deflection and alternative method of unevenly loading a centrally supported bracket for use with unspecified cable ladder and cable tray systems 88
Figure 44 – Test set up for evenly loaded centrally supported brackets intended for unspecified use ... 90
Figure 45 – Test set-up for a C shape ceiling support .. 92
Figure 46 – Test set-up for trapeze system designed for supporting cable ladder only 93
Figure 47 – Test set-up for trapeze system designed for supporting cable tray or cable ladder .. 94
Figure 48 – Alternative test set-up for trapeze systems ... 95
Figure 49 – Impact test stroke arrangement .. 98
Figure 50 – Test set-up impedance along the length .. 100
Figure 51 – Test set-up impedance across the width .. 101
Figure 52 – Test set-up impedance of a joint .. 104
Figure 53 – Test set-up impedance of an earthing terminal or termination 104
Figure 54 – Test set-up impedance of the connection between an access cover and a cable tray or cable ladder ... 105
Figure 55 – Typical arrangement of surface resistivity test .. 107
Figure 56 – Arrangement for the flame test ... 110
Figure A.1 – Solid bottom cable tray lengths .. 116
Figure A.2 – Perforated cable tray lengths .. 116
Figure A.3 – Mesh cable tray lengths .. 116
Figure A.4 – Cable ladder lengths ... 117
Figure B.1 – Cantilever brackets ... 118
Figure B.2 – Pendants .. 119
Figure B.3 – Fixing brackets .. 120
Figure B.4 – C shape ceiling support .. 120
Figure C.1 – Arrangement for the test of 5 s current carrying capability 126
FOREWORD

1) The International Electrotechnical Commission (IEC) is a worldwide organization for standardization comprising all national electrotechnical committees (IEC National Committees). The object of IEC is to promote international co-operation on all questions concerning standardization in the electrical and electronic fields. To this end and in addition to other activities, IEC publishes International Standards, Technical Specifications, Technical Reports, Publicly Available Specifications (PAS) and Guides (hereafter referred to as “IEC Publication(s)”). Their preparation is entrusted to technical committees; any IEC National Committee interested in the subject dealt with may participate in this preparatory work. International, governmental and non-governmental organizations liaising with the IEC also participate in this preparation. IEC collaborates closely with the International Organization for Standardization (ISO) in accordance with conditions determined by agreement between the two organizations.

2) The formal decisions or agreements of IEC on technical matters express, as nearly as possible, an international consensus of opinion on the relevant subjects since each technical committee has representation from all interested IEC National Committees.

3) IEC Publications have the form of recommendations for international use and are accepted by IEC National Committees in that sense. While all reasonable efforts are made to ensure that the technical content of IEC Publications is accurate, IEC cannot be held responsible for the way in which they are used or for any misinterpretation by any end user.

4) In order to promote international uniformity, IEC National Committees undertake to apply IEC Publications transparently to the maximum extent possible in their national and regional publications. Any divergence between any IEC Publication and the corresponding national or regional publication shall be clearly indicated in the latter.

5) IEC itself does not provide any attestation of conformity. Independent certification bodies provide conformity assessment services and, in some areas, access to IEC marks of conformity. IEC is not responsible for any services carried out by independent certification bodies.

6) All users should ensure that they have the latest edition of this publication.

7) No liability shall attach to IEC or its directors, employees, servants or agents including individual experts and members of its technical committees and IEC National Committees for any personal injury, property damage or other damage of any nature whatsoever, whether direct or indirect, or for costs (including legal fees) and expenses arising out of the publication, use of, or reliance upon, this IEC Publication or any other IEC Publications.

8) Attention is drawn to the Normative references cited in this publication. Use of the referenced publications is indispensable for the correct application of this publication.

9) Attention is drawn to the possibility that some of the elements of this IEC Publication may be the subject of patent rights. IEC shall not be held responsible for identifying any or all such patent rights.

IEC 61537 has been prepared by subcommittee 23A: Cable management systems, of IEC technical committee 23: Electrical accessories. It is an International Standard.

This third edition cancels and replaces the second edition published in 2006. This edition constitutes a technical revision.

This edition includes the following significant technical changes with respect to the previous edition:

a) new, repositioned and renumbered figures,
b) revised classification for corrosion,
c) revised SWL test types and procedures,
d) new tests for lengths mounted vertical running horizontal and mounted vertical running vertical,
e) tests for support devices: cantilevers, pendants, C shape ceiling supports and trapeze systems,
f) new and revised annexes including use of tray as a protective earth conductor.
The text of this International Standard is based on the following documents:

<table>
<thead>
<tr>
<th>Draft</th>
<th>Report on voting</th>
</tr>
</thead>
<tbody>
<tr>
<td>23A/xxx/FDIS</td>
<td>23A/xxx/RVD</td>
</tr>
</tbody>
</table>

Full information on the voting for its approval can be found in the report on voting indicated in the above table.

The language used for the development of this International Standard is English.

This document was drafted in accordance with ISO/IEC Directives, Part 2, and developed in accordance with ISO/IEC Directives, Part 1 and ISO/IEC Directives, IEC Supplement, available at www.iec.ch/members_experts/refdocs. The main document types developed by IEC are described in greater detail at www.iec.ch/standardsdev/publications.

The following differences exist in some countries:

In the USA it is permitted to use cable tray systems and cable ladder systems as a PE conductor, in which case national wiring regulations have to be adhered to.

In France it is not permitted to use cable tray systems and cable ladder systems as a PE conductor.

In France the use of flame propagating cable tray and cable ladder systems is not permitted.

In this document, the following print types are used:

– Requirements proper: in roman type.
– Test specifications: in italic type.
– Explanatory matter: in smaller roman type.

The committee has decided that the contents of this document will remain unchanged until the stability date indicated on the IEC website under webstore.iec.ch in the data related to the specific document. At this date, the document will be

• reconfirmed,
• withdrawn,
• replaced by a revised edition, or
• amended.
CABLE MANAGEMENT – CABLE TRAY SYSTEMS AND CABLE LADDER SYSTEMS

1 Scope

This document specifies requirements and tests for cable tray systems and cable ladder systems intended for the support and accommodation of cables and possibly other electrical equipment in electrical and/or communication systems installations. Where necessary, cable tray systems and cable ladder systems can be used for the arrangement of cables into groups.

This document does not apply to conduit systems, cable trunking systems and cable ducting systems or to any current-carrying parts.

NOTE Cable tray systems and cable ladder systems are designed for use as supports for cables and not as enclosures.

2 Normative references

The following documents are referred to in the text in such a way that some or all of their content constitutes requirements of this document. For dated references, only the edition cited applies. For undated references, the latest edition of the referenced document (including any amendments) applies.

IEC 60287 (all parts), Electric cables – Calculation of the current rating

IEC 60417, Graphical symbols for use on equipment (available at http://www.graphical-symbols.info/equipment)

IEC 60695-11-2:2017, Fire hazard testing – Part 11-2: Test flames – 1 kW pre-mixed flame – Apparatus, confirmatory test arrangement and guidance

ISO 1461:2022, Hot dip galvanized coatings on fabricated iron and steel articles – Specifications and test methods

ISO 2081:2018, Metallic and other inorganic coatings – Electroplated coatings of zinc with supplementary treatments on iron or steel

ISO 2409:2020, Paints and varnishes – Cross-cut test

ISO 3506-1:2020, Fasteners – Mechanical properties of corrosion-resistant stainless steel fasteners – Part 1: Bolts, screws and studs with specified grades and property classes

ISO 3575:2016, Continuous hot-dip zinc-coated and zinc-iron alloy-coated carbon steel sheet of commercial and drawing qualities

ISO 4042:2022, Fasteners – Electroplated coating systems

ISO 4046:2016 (all parts), Paper, board, pulps and related terms – Vocabulary
ISO 9227:2022, *Corrosion tests in artificial atmospheres – Salt spray tests*

ISO 10289:1999, *Methods for corrosion testing of metallic and other inorganic coatings on metallic substrates – Rating of test specimens and manufactured articles subjected to corrosion tests*

ISO 4628-8:2012, *Paints and varnishes – Evaluation of degradation of coatings – Designation of quantity and size of defects, and of intensity of uniform changes in appearance – Part 8: Assessment of degree of delamination and corrosion around a scribe or other artificial defect*

ISO 10684:2004 *Fasteners – Hot dip galvanized coatings*

EN 10346:2015, *Continuously hot-dip coated steel flat products for cold forming. Technical delivery conditions*