Electrical installations for lighting and beaconing of aerodromes –
Part 3-2: Requirements for power supplies – Particular requirements for series
circuits
ELECTRICAL INSTALLATIONS FOR LIGHTING AND BEACONING OF AERODROMES

IEC TC 97 - ELECTRICAL INSTALLATIONS FOR LIGHTING AND BEACONING OF AERODROMES

Secretariat:
Spain

Secretary:
Mrs Carmen Martín Marino

Of Interest to the Following Committees:

- Horizontal Standard:
 - []

Functions Concerned:

- [] EMC
- [] Environment
- [] Quality Assurance
- [x] Safety

Submitted for CENELEC Parallel Voting

Attention IEC-CENELEC parallel voting

The attention of IEC National Committees, members of CENELEC, is drawn to the fact that this Final Draft International Standard (FDIS) is submitted for parallel voting. The CENELEC members are invited to vote through the CENELEC online voting system.

Not Submitted for CENELEC Parallel Voting

This document is a draft distributed for approval. It may not be referred to as an International Standard until published as such.

In addition to their evaluation as being acceptable for industrial, technological, commercial and user purposes, Final Draft International Standards may on occasion have to be considered in the light of their potential to become standards to which reference may be made in national regulations.

Recipients of this document are invited to submit, with their comments, notification of any relevant patent rights of which they are aware and to provide supporting documentation.

Recipients of this document are invited to consider for future work to include relevant "In Some Countries" clauses. Recipients are reminded that the CDV stage is the final stage for submitting ISC clauses. (SEE AC/22/2007 OR NEW GUIDANCE DOC).

Title:

Electrical installations for lighting and beaconing of aerodromes - Part 3-2: Requirements for power supplies - Particular requirements for series circuits

Proposed Stability Date:

2028

Note from TC/SC Officers:

Copyright © 2023 International Electrotechnical Commission, IEC. All rights reserved. It is permitted to download this electronic file, to make a copy and to print out the content for the sole purpose of preparing National Committee positions. You may not copy or "mirror" the file or printed version of the document, or any part of it, for any other purpose without permission in writing from IEC.
CONTENTS

FOREWORD

INTRODUCTION

1. Scope ... 6
2. Normative references .. 7
3. Terms and definitions ... 8
4. Classification ... 9
 4.1 Base classes .. 9
 4.2 Voltage classes .. 9
 4.3 Construction classes ... 10
5. Requirements ... 10
 5.1 General .. 10
 5.2 Environmental requirements .. 10
 5.2.1 General .. 10
 5.2.2 Environmental conditions .. 10
 5.2.3 Electromagnetic compatibility (EMC) ... 11
5.3 Functional requirements ... 11
 5.3.1 Input voltage ... 11
 5.3.2 Power ratings .. 11
 5.3.3 Brightness level control ... 11
 5.3.4 Remote interface communication .. 12
 5.3.5 Field circuit isolator ... 13
 5.3.6 Output performance and regulation ... 13
 5.3.7 Protective functions ... 15
 5.3.8 Optional functional requirements ... 16
5.4 Performance requirements .. 18
 5.4.1 Efficiency ... 18
 5.4.2 Input power factor ... 18
 5.4.3 Output voltage limitation specific to 6,6 A CCRs ... 18
 5.4.4 Output voltage limitation specific to general PECS for AGL systems 18
 5.4.5 Output current waveform specific to 6,6 A CCRs .. 18
 5.4.6 Dynamic response specific to 6,6 A CCRs .. 18
5.5 Design requirements .. 19
 5.5.1 General .. 19
 5.5.2 Local control .. 19
 5.5.3 Local indication ... 19
 5.5.4 Mechanical design .. 19
 5.5.5 Electrical design .. 20
 5.5.6 Information and markings .. 21
5.6 Protection against hazards .. 23
 5.6.1 General .. 23
 5.6.2 SPD monitoring ... 23
 5.6.3 Specific considerations for the series circuit .. 23
 5.6.4 Functional safety ... 23
 5.6.5 Cyber security .. 23
6. Type and routine tests .. 24
6.1 General ... 24
6.2 Type tests ... 24
6.3 Routine tests ... 25
6.4 Test descriptions .. 25
 6.4.1 General ... 25
 6.4.2 Visual inspection ... 25
 6.4.3 Test of protective functions .. 25
 6.4.4 Operation test .. 27
 6.4.5 Performance tests ... 28
 6.4.6 Mechanical operation test .. 30
 6.4.7 Electromagnetic compatibility (EMC) .. 30
 6.4.8 Environmental tests ... 31
 6.4.9 Optional accessories .. 32
Bibliography... 33

Figure 1 – Nameplate ... 22
Figure 2 – Open circuit test schematic diagram ... 26

Table 1 – Remote control and monitoring functions ... 12
Table 2 – Standard 6,6 A CCR output current step pre-settings 14
Table 3 – Lamp failure indicator .. 17
Table 4 – Type and routine tests .. 24
Table 5 – Resistive loading test .. 28
Table 6 – Reactive loading test .. 28
FOREWORD

1) The International Electrotechnical Commission (IEC) is a worldwide organization for standardization comprising all national electrotechnical committees (IEC National Committees). The object of IEC is to promote international co-operation on all questions concerning standardization in the electrical and electronic fields. To this end and in addition to other activities, IEC publishes International Standards, Technical Specifications, Technical Reports, Publicly Available Specifications (PAS) and Guides (hereafter referred to as “IEC Publication(s)”). Their preparation is entrusted to technical committees; any IEC National Committee interested in the subject dealt with may participate in this preparatory work. International, governmental and non-governmental organizations liaising with the IEC also participate in this preparation. IEC collaborates closely with the International Organization for Standardization (ISO) in accordance with conditions determined by agreement between the two organizations.

2) The formal decisions or agreements of IEC on technical matters express, as nearly as possible, an international consensus of opinion on the relevant subjects since each technical committee has representation from all interested IEC National Committees.

3) IEC Publications have the form of recommendations for international use and are accepted by IEC National Committees in that sense. While all reasonable efforts are made to ensure that the technical content of IEC Publications is accurate, IEC cannot be held responsible for the way in which they are used or for any misinterpretation by any end user.

4) In order to promote international uniformity, IEC National Committees undertake to apply IEC Publications transparently to the maximum extent possible in their national and regional publications. Any divergence between any IEC Publication and the corresponding national or regional publication shall be clearly indicated in the latter.

5) IEC itself does not provide any attestation of conformity. Independent certification bodies provide conformity assessment services and, in some areas, access to IEC marks of conformity. IEC is not responsible for any services carried out by independent certification bodies.

6) All users should ensure that they have the latest edition of this publication.

7) No liability shall attach to IEC or its directors, employees, servants or agents including individual experts and members of its technical committees and IEC National Committees for any personal injury, property damage or other damage of any nature whatsoever, whether direct or indirect, or for costs (including legal fees) and expenses arising out of the publication, use of, or reliance upon, this IEC Publication or any other IEC Publications.

8) Attention is drawn to the Normative references cited in this publication. Use of the referenced publications is indispensable for the correct application of this publication.

9) IEC draws attention to the possibility that the implementation of this document may involve the use of (a) patent(s). IEC takes no position concerning the evidence, validity or applicability of any claimed patent rights in respect thereof. As of the date of publication of this document, IEC had not received notice of (a) patent(s), which may be required to implement this document. However, implementers are cautioned that this may not represent the latest information, which may be obtained from the patent database available at https://patents.iec.ch. IEC shall not be held responsible for identifying any or all such patent rights.

IEC 61820-3-2 has been prepared by IEC technical committee 97: Electrical installations for lighting and beaconing of aerodromes. It is an International Standard.

This first edition cancels and replaces IEC 61822 published in 2009. This edition constitutes a technical revision.

This edition includes the following significant technical changes with respect to IEC 61822:2009:
a) introduction of power electronic converter systems (PECS) to be used in the aeronautical ground lighting systems other than the 6,6 A aeronautical ground lighting systems;
b) introduction of classification for different device types;
c) introduction of IEC 62477-1:2022 and IEC 62477-2:2018 as the basis for safety related requirements.

The text of this International Standard is based on the following documents:

<table>
<thead>
<tr>
<th>Draft</th>
<th>Report on voting</th>
</tr>
</thead>
<tbody>
<tr>
<td>97/XX/FDIS</td>
<td>97/XX/RVD</td>
</tr>
</tbody>
</table>

Full information on the voting for its approval can be found in the report on voting indicated in the above table.

The language used for the development of this International Standard is English.

This document was drafted in accordance with ISO/IEC Directives, Part 2, and developed in accordance with ISO/IEC Directives, Part 1 and ISO/IEC Directives, IEC Supplement, available at www.iec.ch/members_experts/refdocs. The main document types developed by IEC are described in greater detail at www.iec.ch/publications.

A list of all parts in the IEC 61820 series, published under the general title Electrical installations for lighting and beaconing of aerodromes, can be found on the IEC website.

Future documents in this series will carry the new general title as cited above. Titles of existing documents in this series will be updated at the time of the next edition.

The committee has decided that the contents of this document will remain unchanged until the stability date indicated on the IEC website under webstore.iec.ch in the data related to the specific document. At this date, the document will be

- reconfirmed,
- withdrawn, or
- revised.
INTRODUCTION

This document introduces an open specification for power electronic converter systems (PECS) to be used in aeronautical ground lighting (AGL) series circuit systems. The aim of this open specification is to enable various technologies to be used within AGL systems while ensuring the safe operation and function of the AGL system based on specific items in a series circuit topology.

This document also includes updated requirements for 6.6 A constant current regulators (CCR), previously defined in IEC 61822:2009.

The PECS defined in this document are power supplies for AGL circuits with a series circuit topology. It is possible that a PECS is not interoperable with AGL devices designed for the 6.6 A system. It is also possible that a PECS is not interoperable with AGL devices from other PECS-driven AGL systems. Special care should be taken to ensure the interoperability of the AGL components unless they are specifically designed to be operated together.

To clarify the distinction between different series circuit power supplies, a new classification system is introduced in Clause 4. A base class divides the power supplies into PECS and CCRs. In this document the term PECS refers to series circuit power supplies belonging to the class "General PECS for AGL systems" and the term CCR refers to series circuit power supplies belonging to the class "CCR for 6.6 A systems". The term PECS/CCR refers to both device classes. The class "CCR for 6.6 A AGL systems" corresponds to the traditional series circuit power supplies as defined by IEC 61822:2009.

In addition to the base class, classes for voltage ranges and construction mechanics are introduced. Where a part of this document only refers to one or more specific AGL systems, the systems in question will be clearly indicated.

Meanwhile this updated edition can be partially applicable to PECS dedicated to converting power from a mains supply to power suited for AGL other than series circuit topology. The maintenance work of IEC 61822:2009 into IEC 61820-3-2 started before the writing of the related subparts IEC 61820-3-1 and IEC 61820-3-3 had started. This updated version can therefore be partially applicable to PECS dedicated to converting power from a mains supply to power suited for AGL systems with other than series circuit topology.
1 Scope

This part of IEC 61820 specifies the requirements for power electronic converter systems (PECS) dedicated to powering aeronautical ground lighting (AGL) circuits with series circuit topology. An example of a traditional implementation is an AGL circuit with 6.6 A RMS nominal current, powered by a constant current regulator (CCR). In addition to revising the requirements for 6.6 A CCR setups, this document introduces requirements for general PECS for new AGL systems including systems specifically designed for LED based luminaires.

2 Normative references

The following documents are referred to in the text in such a way that some or all of their content constitutes requirements of this document. For dated references, only the edition cited applies. For undated references, the latest edition of the referenced document (including any amendments) applies.

IEC 60038, IEC standard voltages

IEC 60076-11, Power transformers – Part 11: Dry-type transformers

IEC 61000-6-4, Electromagnetic compatibility (EMC) – Part 6-4: Generic standards – Emission standard for industrial environments

IEC 61000-6-5, Electromagnetic compatibility (EMC) – Part 6-5: Generic standards – Immunity for equipment used in power station and substation environment

IEC 61439-1, Low-voltage switchgear and controlgear assemblies – Part 1: General rules

IEC 61439-2, Low-voltage switchgear and controlgear assemblies – Part 2: Power switchgear and controlgear assemblies

IEC 61508 (all parts), Functional safety of electrical/electronic/programmable electronic safety-related systems

IEC 61820-1:2019, Electrical installations for aeronautical ground lighting at aerodromes – Part 1: Fundamental principles

IEC 62477-1:2022, Safety requirements for power electronic converter systems and equipment – Part 1: General

IEC 62477-2:2018, Safety requirements for power electronic converter systems and equipment – Part 2: Power electronic converters from 1 000 V AC or 1 500 V DC up to 36 kV AC or 54 kV DC

CISPR 11, Industrial, scientific and medical equipment – Radio-frequency disturbance characteristics – Limits and methods of measurement
3 Terms and definitions

For the purposes of this document, the following terms and definitions apply.

ISO and IEC maintain terminology databases for use in standardization at the following addresses:

• IEC Electropedia: available at https://www.electropedia.org/
• ISO Online browsing platform: available at https://www.iso.org/obp

3.1 aeronautical ground lighting constant current series circuit
AGL constant current series circuit
an apparatus configured as an electrical circuit designed to produce and operate with a constant current, independent of variations in the load, in order to provide a specified light output for aeronautical purposes

3.2 constant current regulator
CCR
an apparatus which produces a current output at a constant root mean square (RMS) value independent of variations in the constant current series circuit load, input voltage and service conditions as specified

Note 1 to entry: Within this document, the term CCR is reserved for series circuit power supplies belonging to the class CCR for 6,6 A AGL systems.

Note 2 to entry: It is acknowledged that legacy systems still in use across the world also use alternative current ratings such as 8,33 A and 12 A but 6,6 A is the present standard. For the purposes of this document, 6,6 A systems will be referenced only.

3.3 open circuit
AGL constant current series circuit with an unplanned interruption at any location of the primary current line that produces a hazardous high voltage between the interrupted circuit sections

3.4 forced ventilation
cooling system in which the air is moved by external power

3.5 power electronic converter
PEC
device or part thereof for the purpose of electronic power conversion, including signalling, measurement, control circuitries and other parts, if essential for the power conversion function

[source: IEC 62477-1:2022, 3.55]

3.6 power electronic converter system
PECS
one or more power electronic converters intended to work together with other equipment

Note 1 to entry: Within this document, the term PECS is reserved for series circuit power supplies belonging to the class General PECS for AGL systems.

[source: IEC 62477-1:2022, 3.56, modified – “System consisting of” replaced with “one or more” in the definition and Note 1 to entry added.]