Nuclear power plants –
Instrumentation and control important to safety – Resistance temperature detectors
Nuclear Power Plants – Instrumentation and Control Important to Safety – Resistance Temperature Detectors

Project Number:
IEC 62397 ED2

Date of Circulation:
2022-09-16

Closing Date for Voting:
2022-10-28

Supercedes Documents:
45A/1392/CDV, 45A/1419A/RVC

IEC SC 45A: Instrumentation, Control and Electrical Power Systems of Nuclear Facilities

<table>
<thead>
<tr>
<th>Secretariat:</th>
<th>Secretory:</th>
</tr>
</thead>
<tbody>
<tr>
<td>France</td>
<td>Mr Jean-Paul Bouard</td>
</tr>
</tbody>
</table>

Of Interest to the Following Committees:

- EMC
- Environment
- Quality Assurance
- Safety

Functions Concerned:

- Submitted for CENELEC Parallel Voting
- Not Submitted for CENELEC Parallel Voting

This document is a draft distributed for approval. It may not be referred to as an International Standard until published as such. In addition to their evaluation as being acceptable for industrial, technological, commercial and user purposes, Final Draft International Standards may on occasion have to be considered in the light of their potential to become standards to which reference may be made in national regulations.

Recipients of this document are invited to submit, with their comments, notification of any relevant patent rights of which they are aware and to provide supporting documentation.

Title:
Nuclear power plants – Instrumentation and control important to safety – Resistance temperature detectors

Proposed Stability Date:
2026

Note from TC/SC Officers:
CONTENTS

FOREWORD... 4

INTRODUCTION... 7

1 Scope.. 7

2 Normative references ... 9

3 Terms, definitions and abbreviated terms .. 9

 3.1 Terms and definitions.. 10

 3.2 Abbreviated terms... 11

4 Design and construction requirements .. 12

 4.1 General... 12

 4.2 Reliability... 12

 4.3 Materials... 12

 4.3.1 General.. 12

 4.3.2 Radiation dose to materials.. 12

 4.3.3 Resistance element material.. 12

 4.3.4 Seals and adhesives.. 13

 4.4 Connections... 13

 4.4.1 Structural type .. 13

 4.4.2 Electrical connection ... 14

 4.4.3 Mechanical connection ... 16

 4.5 Manufacturing quality.. 17

 4.6 Ambient conditions (normal and accident operations) and qualification 17

 4.7 RTD performance.. 18

 4.7.1 General.. 18

 4.7.2 Accuracy.. 18

 4.7.3 Resistance temperature calibration.. 18

 4.7.4 Self-heating error... 19

 4.7.5 Thermal response time.. 19

 4.7.6 Interchangeability .. 20

 4.7.7 Electrical insulation resistance... 20

 4.7.8 Repeatability (thermal shock)... 20

 4.7.9 Vibration.. 20

 4.7.10 Steam test.. 21

 4.7.11 Thermal cycling ... 21

 4.7.12 Dielectric inspection .. 21

 4.7.13 Hydraulic strength .. 21

 4.7.14 In situ response time testing... 21

 4.8 Identification.. 22

 4.9 Failure mode and effects analysis ... 22

5 Inspection and tests .. 22

 5.1 General... 22

 5.2 Inspection and test failure .. 23

 5.3 Inspection and test reports... 23

 5.4 Test method.. 23

 5.4.1 Assembly and appearance inspection .. 23

 5.4.2 Calibration procedure .. 23
5.4.3 Self-heating test ... 24
5.4.4 Thermal response time ... 24
5.4.5 Insulation resistance test .. 24
5.4.6 Repeatability test (thermal shock) 24
5.4.7 Vibration test ... 24
5.4.8 Steam test .. 25
5.4.9 Thermal cycling ... 25
5.4.10 Dielectric inspection test .. 25
5.4.11 Hydraulic test ... 25
5.4.12 In situ response time test ... 26
5.4.13 Cross-calibration testing .. 26
5.5 Production test .. 27
5.6 Qualification test ... 28
6 Documentation ... 29

Annex A (informative) In situ response time test methods 31
A.1 Loop current step response test (LCSR) 31
A.2 Calculation of the response time by temperature noise (passive method) .. 34
A.3 Self-heating method (active method) 36
A.4 Instructions for the application of test 38

Bibliography ... 39

Figure 1 – Form and dimensions of an RTD 13
Figure 2 – Installation of a rigid RTD (Type I) 14
Figure 3 – Installation of a rigid RTD (Type II) long insertion 14
Figure 4 – Installation of a rigid RTD (Type II) short insertion 14
Figure 5 – Type A of RTD connection ... 16
Figure 6 – Type B of RTD connection ... 16
Figure A.1 – LCSR and plunge transients 33
Figure A.2 – Power spectrum density (PSD) plot of a sensor (smoothing of the power spectrum) 35
Figure A.3 – Power spectrum density (PSD) plot of a sensor (associated modal response) 36
INTERNATIONAL ELECTROTECHNICAL COMMISSION

NUCLEAR POWER PLANTS –
INSTRUMENTATION AND CONTROL IMPORTANT TO SAFETY –
RESISTANCE TEMPERATURE DETECTORS

FOREWORD

1) The International Electrotechnical Commission (IEC) is a worldwide organization for standardization comprising all national electrotechnical committees (IEC National Committees). The object of IEC is to promote international co-operation on all questions concerning standardization in the electrical and electronic fields. To this end and in addition to other activities, IEC publishes International Standards, Technical Specifications, Technical Reports, Publicly Available Specifications (PAS) and Guides (hereafter referred to as “IEC Publication(s)”). Their preparation is entrusted to technical committees; any IEC National Committee interested in the subject dealt with may participate in this preparatory work. International, governmental and non-governmental organizations liaising with the IEC also participate in this preparation. IEC collaborates closely with the International Organization for Standardization (ISO) in accordance with conditions determined by agreement between the two organizations.

2) The formal decisions or agreements of IEC on technical matters express, as nearly as possible, an international consensus of opinion on the relevant subjects since each technical committee has representation from all interested IEC National Committees.

3) IEC Publications have the form of recommendations for international use and are accepted by IEC National Committees in that sense. While all reasonable efforts are made to ensure that the technical content of IEC Publications is accurate, IEC cannot be held responsible for the way in which they are used or for any misinterpretation by any end user.

4) In order to promote international uniformity, IEC National Committees undertake to apply IEC Publications transparently to the maximum extent possible in their national and regional publications. Any divergence between any IEC Publication and the corresponding national or regional publication shall be clearly indicated in the latter.

5) IEC itself does not provide any attestation of conformity. Independent certification bodies provide conformity assessment services and, in some areas, access to IEC marks of conformity. IEC is not responsible for any services carried out by independent certification bodies.

6) All users should ensure that they have the latest edition of this publication.

7) No liability shall attach to IEC or its directors, employees, servants or agents including individual experts and members of its technical committees and IEC National Committees for any personal injury, property damage or other damage of any nature whatsoever, whether direct or indirect, or for costs (including legal fees) and expenses arising out of the publication, use of, or reliance upon, this IEC Publication or any other IEC Publications.

8) Attention is drawn to the Normative references cited in this publication. Use of the referenced publications is indispensable for the correct application of this publication.

9) Attention is drawn to the possibility that some of the elements of this IEC Publication may be the subject of patent rights. IEC shall not be held responsible for identifying any or all such patent rights.

IEC 62397 has been prepared by subcommittee 45A: Instrumentation, control and electrical power systems of nuclear facilities, of IEC technical committee 45: Nuclear instrumentation. It is an International Standard.

This second edition cancels and replaces the first edition, published in 2007; it also cancels and replaces the first edition of IEC 61224:1993. This edition constitutes a technical revision.

This edition includes the following significant technical changes with respect to the previous edition:

1) The definitions, terms, references, test methods, test requirements and other contents in IEC 61224 are incorporated into the corresponding clauses of IEC 62397, including the situ response time test methods;

2) Move the second paragraph of Scope to 4.1 and add "certain design extension conditions" in the text;

3) Add the definition of temperature units of ITS-90;
6) Delete the outdated definition of "accuracy (measurement)" and modify the definition of "calibration", "drift" and "response time";
7) Add the terms and definitions of "cross-calibration (cross-validation)", "self-heating index", "tolerance of RTD", "sheath", "in situ measurement", and some abbreviated terms (e.g., NPP);
8) Delete the reference values of failure rate, radiation dose, contact resistance and leak rate, environmental conditions and test conditions in 4.2, 4.3.2, 4.4.2.2, 4.6, 5.4.7;
9) Clarify 4.3.1;
10) Add "fast neutron damage" and "β irradiation" in 4.3.2 and correct the requirement for material change to be "shall not";
11) Replace platinum description with general material requirement in 4.3.3;
12) Delete the statement on sealant elements and flat sealants;
13) Add labels of dust cover, spring and extension tube in Figure 3 and Figure 4 and correct a typo in Figure 6;
14) Add electrical connector configuration requirement referring to IEC 60751 in 4.4.2.1;
15) Modify the temperature rating requirement of type I connector in 4.4.2.2 and add the definition of manufacturer in the footnote;
16) Add the type of connection for RTD mounted in pipe and relax the statement on spring force in 4.4.3.1;
17) Modify the type I and type II statement in 4.4;
18) Change the subtitle to "Manufacturing Quality" and add detailed requirements in 4.5;
19) Considering the application for difference types of nuclear power plants, in 4.6 and 4.7 introduce the concept that the user shall specify the requirements, test method and acceptance criteria for tests depending on the application of the subject RTD;
20) Delete the last three paragraphs in 4.6;
21) Add detailed performance requirements in 4.7 and move the test requirements to a new subclause 5.4 "Test method";
22) Replace "330 °C" in the standard with the (highest) operating temperature;
23) Add a new subclause "4.7.1 General" to describe the general requirements and restate in situ response time measurement requirement;
24) Add the Callendar formula for temperature range of -200 °C to 0 °C and delete the temperature tolerance values and refer to IEC 60751 in 4.7.3;
25) Supplement detailed requirements of "self-heating error" in 4.7.4;
26) Change the subtitle to "thermal response time" in 4.7.5 and delete the definition of thermal response time;
27) Relax the performance requirements to "should" in 4.7.8, 4.7.9, 4.7.10, 4.7.11 and 4.7.13, and relax the steam test requirement to only RTDs used in steam environment;
28) Merge "Insulation resistance test after storage" into "Electrical insulation resistance", reduce the requirement and change insulation resistance under 200 °C to be 10 MΩ in 4.7.7;
29) Add "Dielectric inspection" and "Hydraulic strength" as 4.7.12 and 4.7.13;
30) Revise description on in situ response time testing in 4.7.14;
31) Add identifications in 4.8;
32) Delete the insulation breakdown test;
33) Refer to IEC 60751 for self-heating test in 5.4.3;
34) Delete the vibration spectrum for vibration test, and refer to IEC 60068-2-6 in 5.4.7;
35) Revise thermal cycling test requirement to be more general and refer to IEC 60068-2-30 in 5.4.9;
36) Add 5.4.13 "Cross-calibration testing";
37) Add dielectric inspection test and hydraulic test as product tests in 5.5 and note that the user can specify the test requirement;
38) Add dielectric inspection test and hydraulic test as qualification tests in 5.6, note that the user can specify the test requirement, and refer to IEC/IEEE 60780-323 and IEC/IEEE 60980-344 or pertinent national guides and regulations;
39) Change title from "Technical information required" to "Documentation" of Clause 6 and add "the regular maintenance strategy" in performance specification;
40) Add an informative annex "Annex A In situ response time test methods" to include the related information from IEC 61224, update figures and cross-references, and cite it in 4.7.13 and 5.4.12;
41) Add the IAEA documents in bibliography.

The text of this International Standard is based on the following documents:

<table>
<thead>
<tr>
<th>Draft</th>
<th>Report on voting</th>
</tr>
</thead>
<tbody>
<tr>
<td>45A/XX/FDIS</td>
<td>45A/XX/RVD</td>
</tr>
</tbody>
</table>

Full information on the voting for its approval can be found in the report on voting indicated in the above table.

The language used for the development of this International Standard is English.

This document was drafted in accordance with ISO/IEC Directives, Part 2, and developed in accordance with ISO/IEC Directives, Part 1 and ISO/IEC Directives, IEC Supplement, available at www.iec.ch/members_experts/refdocs. The main document types developed by IEC are described in greater detail at www.iec.ch/publications.

The committee has decided that the contents of this document will remain unchanged until the stability date indicated on the IEC website under webstore.iec.ch in the data related to the specific document. At this date, the document will be

- reconfirmed,
- withdrawn,
- replaced by a revised edition, or
- amended.
INTRODUCTION

a) Technical background, main issues and organisation of the standard

This standard describes the requirements for the design, material selection, procurement, construction, and testing of resistance temperature detectors (RTDs) used in nuclear power plants (NPPs). These RTDs may be used in both the nuclear safety I&C systems and/or in the non-safety-related instrumentation systems.

This standard is a revision merger of IEC 62397 and IEC 61224 and was initiated in November 2019.

b) Situation of the current standard in the structure of the SC 45A standard series

IEC 62397 is not directly referenced by IEC 61513 and is a third-level SC 45A document tackling the issue of RTDs.

For more details on the structure of the SC 45A series of standards, see item d) of this introduction.

c) Recommendations and limitations regarding the application of this standard

There is no particular recommendation or limitation regarding the application of this standard.

d) Description of the structure of the IEC SC45A standard series and relationships with other IEC documents and other bodies documents (IAEA, ISO)

The IEC SC 45A standard series comprises a hierarchy of four levels. The top-level documents of the IEC SC 45A standard series are IEC 61513 and IEC 63046.

IEC 61513 provides general requirements for instrumentation and control (I&C) systems and equipment that are used to perform functions important to safety in nuclear power plants (NPPs). IEC 63046 provides general requirements for electrical power systems of NPPs; it covers power supply systems including the supply systems of the I&C systems.

IEC 61513 and IEC 63046 are to be considered in conjunction and at the same level. IEC 61513 and IEC 63046 structure the IEC SC 45A standard series and shape a complete framework establishing general requirements for instrumentation, control and electrical power systems for nuclear power plants.

IEC 61513 and IEC 63046 refer directly to other IEC SC 45A standards for general requirements for specific topics, such as categorization of functions and classification of systems, qualification, separation, defence against common cause failure, control room design, electromagnetic compatibility, human factors engineering, cybersecurity, software and hardware aspects for programmable digital systems, coordination of safety and security requirements and management of ageing. The standards referenced directly at this second level should be considered together with IEC 61513 and IEC 63046 as a consistent document set.

At a third level, IEC SC 45A standards not directly referenced by IEC 61513 or by IEC 63046 are standards related to specific requirements for specific equipment, technical methods, or activities. Usually these documents, which make reference to second-level documents for general requirements, can be used on their own.

A fourth level extending the IEC SC 45 standard series, corresponds to the Technical Reports which are not normative.
The IEC SC 45A standards series consistently implements and details the safety and security principles and basic aspects provided in the relevant IAEA safety standards and in the relevant documents of the IAEA nuclear security series (NSS). In particular this includes the IAEA requirements SSR-2/1, establishing safety requirements related to the design of nuclear power plants (NPPs), the IAEA safety guide SSG-30 dealing with the safety classification of structures, systems and components in NPPs, the IAEA safety guide SSG-39 dealing with the design of instrumentation and control systems for NPPs, the IAEA safety guide SSG-34 dealing with the design of electrical power systems for NPPs, the IAEA safety guide SSG-51 dealing with human factors engineering in the design of NPPs and the implementing guide NSS17 for computer security at nuclear facilities. The safety and security terminology and definitions used by the SC 45A standards are consistent with those used by the IAEA.

IEC 61513 and IEC 63046 have adopted a presentation format similar to the basic safety publication IEC 61508 with an overall life-cycle framework and a system life-cycle framework. Regarding nuclear safety, IEC 61513 and IEC 63046 provide the interpretation of the general requirements of IEC 61508-1, IEC 61508-2 and IEC 61508-4, for the nuclear application sector. In this framework, IEC 60880, IEC 62138 and IEC 62566 correspond to IEC 61508-3 for the nuclear application sector.

IEC 61513 and IEC 63046 refer to ISO 9001 as well as to IAEA GSR part 2 and IAEA GS-G-3.1 and IAEA GS-G-3.5 for topics related to quality assurance (QA).

At level 2, regarding nuclear security, IEC 62645 is the entry document for the IEC/SC 45A security standards. It builds upon the valid high level principles and main concepts of the generic security standards, in particular ISO/IEC 27001 and ISO/IEC 27002; it adapts them and completes them to fit the nuclear context and coordinates with the IEC 62443 series. At level 2, IEC 60964 is the entry document for the IEC/SC 45A control rooms standards, IEC 63351 is the entry document for the human factors engineering standards and IEC 62342 is the entry document for the ageing management standards.

NOTE 1 It is assumed that for the design of I&C systems in NPPs that implement conventional safety functions (e.g. to address worker safety, asset protection, chemical hazards, process energy hazards) international or national standards would be applied.

NOTE 2 IEC TR 64000 provides a more comprehensive description of the overall structure of the IEC SC 45A standards series and of its relationship with other standards bodies and standards.
1 Scope

This document describes the requirements for resistance temperature detectors (RTDs) suitable for applications in I&C systems important to safety of nuclear power plants. The requirements of RTDs include design, materials, manufacturing, testing, calibration, procurement, and inspection. RTDs used for safety applications in Nuclear Power Plants can be categorized into direct-immersed and thermowell-mounted RTDs. Furthermore, there are RTDs with specific design which cannot be assigned to the categories mentioned above. However, they are also covered by the requirements stated in this document.

This document does not cover the design, material selection, and construction of the thermowell, the guide tube, the extension cable, and the temperature transmitter or resistance bridge which may be associated with the RTD.

2 Normative references

The following documents are referred to in the text in such a way that some or all of their content constitutes requirements of this document. For dated references, only the edition cited applies. For undated references, the latest edition of the referenced document (including any amendments) applies.

IEC 60751:2022, Industrial platinum resistance thermometers and platinum temperature sensors

IEC/IEEE 60780-323:2016, Nuclear facilities – Electrical equipment important to safety – Qualification

IEC/IEEE 60980-344:2020, Nuclear facilities – Equipment important to safety – Seismic qualification