Railway applications – Rolling stock – Batteries for auxiliary power supply systems –
Part 4: Secondary sealed nickel-metal hydride batteries
This document is a draft distributed for approval. It may not be referred to as an International Standard until published as such.

In addition to their evaluation as being acceptable for industrial, technological, commercial and user purposes, Final Draft International Standards may on occasion have to be considered in the light of their potential to become standards to which reference may be made in national regulations.

Recipients of this document are invited to submit, with their comments, notification of any relevant patent rights of which they are aware and to provide supporting documentation.

TITLE:

Railway applications – Rolling stock – Batteries for auxiliary power supply systems – Part 4: Secondary sealed nickel-metal hydride batteries

PROPOSED STABILITY DATE: 2024

NOTE FROM TC/SC OFFICERS:
CONTENTS

FOREWORD ... 4

1 Scope ... 6

2 Normative references .. 6

3 Terms, definitions and abbreviated terms .. 7

3.1 Terms and definitions .. 7

3.2 Abbreviated terms ... 9

4 General requirements ... 9

4.1 Definitions of components of a battery system (images are examples) 9

4.2 Definition of battery type .. 10

4.2.1 General ... 10

4.2.2 Cell designation ... 11

4.2.3 Prismatic cells ... 11

4.2.4 Cylindrical cells .. 11

4.3 Environmental conditions .. 11

4.3.1 Battery system ... 11

4.3.2 Battery module ... 11

4.4 System requirements .. 11

4.4.1 System voltage ... 11

4.4.2 Charging requirements ... 12

4.4.3 Discharging requirements .. 16

4.4.4 Charge retention (self-discharge).. 17

4.4.5 Requirements for battery capacity sizing .. 17

4.5 Safety and protection requirements ... 18

4.5.1 General .. 18

4.5.2 Deep discharge of batteries .. 18

4.5.3 Temperature compensation during charging ... 18

4.6 Fire protection ... 18

4.7 Maintenance .. 18

5 Mechanical design of battery system .. 18

6 Electrical interface .. 19

7 Markings .. 19

7.1 Safety signs .. 19

7.2 Nameplate .. 19

7.2.1 General .. 19

7.2.2 Battery modules and cells ... 19

8 Storage and transportation conditions .. 19

8.1 Transportation ... 19

8.2 Storage of battery ... 19

9 Testing .. 20

9.1 General ... 20

9.2 Parameter measurement tolerances .. 20

9.3 Type test ... 21

9.3.1 General .. 21

9.3.2 Electrical characteristic tests ... 21

9.3.3 Dielectric test ... 22
9.3.4 Load profile test ... 22
9.3.5 Shock and vibration test .. 22
9.3.6 Reliability test ... 22
9.4 Routine test .. 22
9.4.1 General ... 22
9.4.2 Visual checks .. 22
9.4.3 Dielectric test ... 22
9.4.4 Measurement of open circuit voltage ... 23
9.4.5 Measurement of Internal resistance ... 23
Annex A (informative) Other configuration of the battery charging system 24
A.1 General .. 24
A.2 Charging requirements for the main charger ... 24
A.3 Charging requirements for the additional charger .. 25
A.3.1 General ... 25
A.3.2 Temperature compensation during charging .. 26
Annex B (informative) Declaration of cell model range representative of the testing 27
B.1 Electrical performance declaration ... 27
B.2 Shock and vibration declaration ... 27
Bibliography ... 28

Figure 1 –Definition of cell(s), battery module, crate, tray and battery box 10
Figure 2 – Example of discharge curves at various constant discharge currents based on percentage of capacity ... 12
Figure 3 – Examples of Ni-MH charge curves ... 12
Figure 4 – Example of interfaces between battery box and battery charging system 13
Figure 5 – Typical charging characteristic of secondary sealed nickel-metal hydride battery .. 16
Figure A.1 – Example of interface with the additional charger in the battery box 25
Figure A.2 – Examples of Ni-MH charge curves ... 26

Table 1 – Requirements of the charging characteristics ... 13
Table 2 – Typical Ni-MH battery charging characteristics ... 15
Table 3 – Parameters and responsibility for battery capacity sizing 17
Table 4 – Type test and routine test .. 20
Table A.1 – Requirements of the charging characteristics for the main charger outside the battery box with the additional charger in the battery box 24
RAILWAY APPLICATIONS – ROLLING STOCK – BATTERIES FOR AUXILIARY POWER SUPPLY SYSTEMS –

Part 4: Secondary sealed nickel-metal hydride batteries

FOREWORD

1) The International Electrotechnical Commission (IEC) is a worldwide organization for standardization comprising all national electrotechnical committees (IEC National Committees). The object of IEC is to promote international co-operation on all questions concerning standardization in the electrical and electronic fields. To this end and in addition to other activities, IEC publishes International Standards, Technical Specifications, Technical Reports, Publicly Available Specifications (PAS) and Guides (hereafter referred to as “IEC Publication(s)”). Their preparation is entrusted to technical committees; any IEC National Committee interested in the subject dealt with may participate in this preparatory work. International, governmental and non-governmental organizations liaising with the IEC also participate in this preparation. IEC collaborates closely with the International Organization for Standardization (ISO) in accordance with conditions determined by agreement between the two organizations.

2) The formal decisions or agreements of IEC on technical matters express, as nearly as possible, an international consensus of opinion on the relevant subjects since each technical committee has representation from all interested IEC National Committees.

3) IEC Publications have the form of recommendations for international use and are accepted by IEC National Committees in that sense. While all reasonable efforts are made to ensure that the technical content of IEC Publications is accurate, IEC cannot be held responsible for the way in which they are used or for any misinterpretation by any end user.

4) In order to promote international uniformity, IEC National Committees undertake to apply IEC Publications transparently to the maximum extent possible in their national and regional publications. Any divergence between any IEC Publication and the corresponding national or regional publication shall be clearly indicated in the latter.

5) IEC itself does not provide any attestation of conformity. Independent certification bodies provide conformity assessment services and, in some areas, access to IEC marks of conformity. IEC is not responsible for any services carried out by independent certification bodies.

6) All users should ensure that they have the latest edition of this publication.

7) No liability shall attach to IEC or its directors, employees, servants or agents including individual experts and members of its technical committees and IEC National Committees for any personal injury, property damage or other damage of any nature whatsoever, whether direct or indirect, or for costs (including legal fees) and expenses arising out of the publication, use of, or reliance upon, this IEC Publication or any other IEC Publications.

8) Attention is drawn to the Normative references cited in this publication. Use of the referenced publications is indispensable for the correct application of this publication.

9) Attention is drawn to the possibility that some of the elements of this IEC Publication may be the subject of patent rights. IEC shall not be held responsible for identifying any or all such patent rights.

International Standard IEC 62973-4 has been prepared by IEC technical committee 9: Electrical equipment and systems for railways.

The text of this International Standard is based on the following documents:

<table>
<thead>
<tr>
<th>FDIS</th>
<th>Report on voting</th>
</tr>
</thead>
<tbody>
<tr>
<td>9/XX/FDIS</td>
<td>9/XX/RVD</td>
</tr>
</tbody>
</table>

Full information on the voting for the approval of this International Standard can be found in the report on voting indicated in the above table.

This document has been drafted in accordance with the ISO/IEC Directives, Part 2.

This document is to be used in conjunction with IEC 62675, IEC 63115-1 and IEC 63115-2.
A list of all parts in the IEC 62973 series, published under the general title *Railway applications – Rolling stock – Batteries for auxiliary power supply systems*, can be found on the IEC website.

The committee has decided that the contents of this document will remain unchanged until the stability date indicated on the IEC website under "http://webstore.iec.ch" in the data related to the specific document. At this date, the document will be

- reconfirmed,
- withdrawn,
- replaced by a revised edition, or
- amended.
RAILWAY APPLICATIONS – ROLLING STOCK –
BATTERIES FOR AUXILIARY POWER SUPPLY SYSTEMS –

Part 4: Secondary sealed nickel-metal hydride batteries

1 Scope

This part of IEC 62973 applies to secondary sealed nickel-metal hydride battery technologies for auxiliary power supply systems used on rolling stock.

This document specifies the requirements of the characteristics and tests for the sealed nickel-metal hydride cells and supplements IEC 62973-1 which applies to any rolling stock types (e.g. light rail vehicles, tramways, streetcars, metros, commuter trains, regional trains, high speed trains, locomotives, etc.). Unless otherwise specified, the requirements of IEC 62973-1 apply.

This document also specifies the requirements of the interface between the batteries and the battery chargers.

2 Normative references

The following documents are referred to in the text in such a way that some or all of their content constitutes requirements of this document. For dated references, only the edition cited applies. For undated references, the latest edition of the referenced document (including any amendments) applies.

IEC 60051 (all parts), Direct acting indicating analogue electrical measuring instruments and their accessories

IEC 60077-1, Railway applications – Electric equipment for rolling stock – Part 1: General service conditions and general rules

IEC 61960-3, Secondary cells and batteries containing alkaline or other non-acid electrolytes – Secondary lithium cells and batteries for portable applications – Part 3: Prismatic and cylindrical lithium secondary cells and batteries made from them

IEC 62485-2, Safety requirements for secondary batteries and battery installations – Part 2: Stationary batteries

IEC 62675, Secondary cells and batteries containing alkaline or other non-acid electrolytes – Sealed nickel-metal hydride prismatic rechargeable single cells

IEC 62902:2019, Secondary cells and batteries – Marking symbols for identification of their chemistry

IEC 62973-1:2018, Railway applications – Rolling stock – Batteries for auxiliary power supply systems – Part 1: General requirements

IEC 63115-1:2020, Secondary cells and batteries containing alkaline or other non-acid electrolytes – Sealed nickel-metal hydride cells and batteries for use in industrial applications – Part 1: Performance
Terms, definitions and abbreviated terms

3.1 Terms and definitions

ISO and IEC maintain terminological databases for use in standardization at the following addresses:

• IEC Electropedia: available at http://www.electropedia.org;
• ISO Online browsing platform: available at http://www.iso.org/obp.

NOTE All typical battery related descriptions are defined in IEC 60050-482.

3.1.1 nickel-metal hydride battery
Ni-MH battery
secondary battery with an electrolyte of aqueous potassium hydroxide, a positive electrode containing nickel as nickel hydroxide and a negative electrode of hydrogen in the form of a metal hydride

Note 1 to entry: Nickel-metal hydride battery contains assembly of sealed cells.

[SOURCE: IEC 60050-482: 2004, 482-05-08, modified – Abbreviation and Note 1 to entry have been added.]

3.1.2 cell
basic functional unit, consisting of an assembly of electrodes, electrolyte, container, terminals and usually separators, that is a source of electric energy obtained by direct conversion of chemical energy

Note 1 to entry: In this document cell means secondary sealed nickel-metal hydride cell.

[SOURCE: IEC 60050-482: 2004, 482-01-01, modified – Note 1 to entry has been replaced.]

3.1.3 sealed cell

cell which remains closed and does not release either gas or liquid when operated within the limits specified by the manufacturer

Note 1 to entry: A sealed cell may be equipped with a safety device to prevent a dangerously high internal pressure and is designed to operate during its life in its original sealed state.

3.1.4 secondary cell

cell which is designed to be electrically recharged

Note 1 to entry: The recharge is accomplished by way of a reversible chemical reaction.

[SOURCE: IEC 60050-482: 2004, 482-01-03]