

IEC TR 63401-3

Edition 1.0 2023-12

TECHNICAL REPORT

Dynamic characteristics of inverter-based resources in bulk power systems – Part 3: Fast frequency response and frequency ride-through from inverterbased resources during severe frequency disturbances

INTERNATIONAL ELECTROTECHNICAL COMMISSION

ICS 27.160; 27.180; 29.020

ISBN 978-2-8322-8000-3

Warning! Make sure that you obtained this publication from an authorized distributor.

– 2 –

IEC TR 63401-3:2023 © IEC 2023

CONTENTS

FC	FOREWORD			
IN	TRODU	CTION	8	
1	Scop	Scope		
2	Norm	ative references	9	
3	Term	s, definitions and abbreviated terms	9	
	3.1	Terms and definitions	9	
	3.2	Abbreviated terms		
4	Defin	ition of fast frequency response (FFR)		
	4.1	General		
	4.2	Existing usage of term FFR		
	4.2.1	FFR in Australia and Texas		
	4.2.2	FFR and synthetic inertia in European Network of Transmission System Operators for Electricity (ENTSO-E)	15	
	4.2.3	FFR and synthetic inertia in EirGrid/SONI		
	4.2.4	The enhanced frequency response and enhanced frequency control capability in the UK		
	4.2.5	FFR in North American Electric Reliability Council (NERC) and North America	18	
	4.3	Definition of FFR given by CIGRE JWG C2/C4.41	18	
	4.4	Recommended definition of fast frequency response (FFR)	19	
	4.4.1	Clear definition	. 19	
	4.4.2	Impact mechanism on system frequency	. 19	
	4.5	Description of the relationship among synchronous inertia response, fast frequency response, and primary frequency response	20	
	4.5.1	Relationship between synchronous inertia response and fast frequency response	20	
	4.5.2	Relationship between fast frequency response and primary frequency response	21	
	4.5.3	Relationship between synchronous inertia response and primary frequency response	21	
5	Syste	m needs and conditions where fast frequency response is warranted	22	
	5.1	Higher ROCOF and lower nadir	22	
	5.1.1	General	.22	
	5.1.2	Higher ROCOF	.23	
	5.1.3	Worse nadir	.24	
	5.1.4	Simulation study		
	5.1.5	Blackout in Great Britain power grid on 9 August 2019		
	5.2	Large fluctuation of system frequency in power system operation		
	5.2.1	General		
	5.2.2	Frequency regulation scheme		
	5.2.3	Relatively large load fluctuation		
e	5.2.4	Relatively weak and slow PFR		
6		rmance objectives for fast frequency response from inverter-based resources		
	6.1	The response time of FFR		
	6.2	The response characteristics and maximum response capacity of FFR	.32	
	6.3	Test performance for renewable generator equipped with fast frequency response in China	34	
	6.3.1	General		

- 3	
-----	--

		_	
	.3.2	Engineering construction	
	.3.3	Test practice and performance	35
		e technologies, controls, and tuning considerations for fast frequency e and primary frequency response	35
7.1	Ava	ailable technologies for fast frequency response	35
7.	.1.1	Technology capabilities for FFR service	35
7.	.1.2	Wind turbines	36
7.	.1.3	Solar PV	37
7.	.1.4	Battery energy storage	
7.	.1.5	HVDC	40
7.2	Ava	ailable controls for fast frequency response	41
7.	.2.1	General	41
7.	.2.2	Additional FFR control for grid-following converter	41
7.	.2.3	Grid-forming converter control	42
7.3		ning considerations for fast frequency response and primary frequency ponse	44
	est met	hods for verifying turbine-level or plant-level fast frequency response	
	• •	/	
8.1		neral	
8.2		ection of test equipment	
8.3		t wiring method	
8.4		ection of measuring conditions	
8.5		p frequency disturbance test	
8.6		pe frequency disturbance test	
8.7		ual frequency disturbance simulation test	
8.8		ual frequency disturbance simulation test	48
		conditions	49
9.1	Def	inition of rate of change of frequency (ROCOF)	49
9.2		e-through (withstand) capability for high ROCOF conditions	
10 T		cifications for high ROCOF conditions	
10.1	•	formance specification	
	0.1.1	Effective and operating ranges	
	0.1.2	Accuracy related to the characteristic quantity	
	0.1.2	Start time for rate of change of frequency (ROCOF) function	
	0.1.4	Accuracy related to the operate time delay setting	
	0.1.5	Voltage input	
10.3		nctional test methodology	
	2 Fui 0.2.1	General	
	0.2.1	Determination of steady-state errors related to the characteristic	
	0.2.2	quantity	55
1(0.2.3	Determination of the start time	
1(0.2.4	Determination of the accuracy of the operate time delay	
	0.2.5	Determination of disengaging time	
		g capabilities and improvements to dynamic models for fast frequency	
		and related high ROCOF conditions	67
11.	1 Gei	neral	67
11.3		namic models for fast frequency response and related high ROCOF	
		ditions	68
1	1.2.1	Dynamic models of whole power systems	68

-4-

11.2.2 Simplification of dynamic models	
11.3 Modelling improvements	
Bibliography	77
Figure 1 – Proposed response times by ERCOT as of 2014	12
Figure 2 – Time elements of FFR	14
Figure 3 – Impact mechanism on system frequency by FFR	20
Figure 4 – System frequency in response to a large generation trip	22
Figure 5 – Frequency characteristics under the same disturbance with various inverter- based resources penetration	26
Figure 6 – Frequency response in blackout in Great Britain power grid on 9 August 2019.	27
Figure 7 – System frequency fluctuation under secondary frequency regulation due to load fluctuation in a grid	29
Figure 8 – Assignment of different modulations for quasi-steady-state frequency fluctuation	30
Figure 9 – Controlled contribution of electrical power provided by ROCOF-based FFR	33
Figure 10 – The controlled contribution of electrical power provided by deviation-based FFR	
Figure 11 – Scheme of the transfer function of ROCOF-based FFR for grid-following converters	41
Figure 12 – Scheme of the transfer function of deviation-based FFR for grid-following converters	
Figure 13 – Schematic of the droop control of deviation-based FFR for grid-forming converters	43
Figure 14 – Time elements of FFR	
Figure 15 – Test wiring diagram	
Figure 16 – Test slope curve for ROCOF-based FFR	
Figure 17 – Schematic of increased ROCOF with increased renewable generation	
Figure 18 – The response of IBRs for frequency slope change (change from 45 Hz to	51
Figure 19 – The response of IBRs for frequency step change of 1 Hz	52
Figure 20 – Operate time and operate time delay setting	54
Figure 21 – Example of test method for positive ROCOF function	
Figure 22 – Test method for measurement of reset value for ROCOF functions: example for positive ROCOF function	
Figure 23 – Start time measurement of positive ROCOF function	63
Figure 24 – Operate time delay measurement of positive ROCOF	65
Figure 25 – Disengaging time measurement of ROCOF	
Figure 26 – Second generation BPS renewable energy system (RES) modules	69
Figure 27 – Load modelling practices	70
Figure 28 – WECC CLM	72
Figure 29 – Electronically interfaced load model	72
Figure 30 – Distributed energy resource model	73
Figure 31 – The traditional SFR model	73
Figure 32 – Improved model in light of ROCOF-based FFR and deviation-based FFR	75

IEC TR 63401-3:2023 © IEC 2023 - 5 -

Figure 33 – Electrical power from wind turbines for different combinations of wind power control strategies under 20 % wind power penetration in system	76
Table 1 – Frequency response times of FFR	13
Table 2 – Frequency response in Great Britain power grid on 9 August 2019	29
Table 3 – Summary of response times in different countries and regions	31
Table 4 – Summary of response times for inverter-based resources	31
Table 5 – Typical ranges of control parameters of FFR	34
Table 6 – Inertia response and fast frequency regulation performance	
Table 7 – Input and output of a data collection point	
Table 8 – Test conditions for fast frequency response of renewable energy power plant	46
Table 9 – Stepped frequency disturbance test	47
Table 10 – Test conditions for actual frequency disturbance simulation	48
Table 11 – Example of effective and operating ranges for over- and under-frequency protection	53
Table 12 – Example of effective and operating ranges for ROCOF protection	53
Table 13 – Test points for ROCOF function	57
Table 14 – Reporting of ROCOF accuracy	58
Table 15 – Test points of reset value for ROCOF function	62
Table 16 – Reporting of the reset value for ROCOF function	63
Table 17 – Test points for minimum frequency protection function start time	
Table 18 – Test points to measure operate time delay	65
Table 19 – Test points for accuracy of the operate time delay	
Table 20 – Test points of disengaging time for ROCOF function	67

This is a preview - click here to buy the full publication

- 6 -

IEC TR 63401-3:2023 © IEC 2023

INTERNATIONAL ELECTROTECHNICAL COMMISSION

DYNAMIC CHARACTERISTICS OF INVERTER-BASED RESOURCES IN BULK POWER SYSTEMS –

Part 3: Fast frequency response and frequency ride-through from inverter-based resources during severe frequency disturbances

FOREWORD

- 1) The International Electrotechnical Commission (IEC) is a worldwide organization for standardization comprising all national electrotechnical committees (IEC National Committees). The object of IEC is to promote international co-operation on all questions concerning standardization in the electrical and electronic fields. To this end and in addition to other activities, IEC publishes International Standards, Technical Specifications, Technical Reports, Publicly Available Specifications (PAS) and Guides (hereafter referred to as "IEC Publication(s)"). Their preparation is entrusted to technical committees; any IEC National Committee interested in the subject dealt with may participate in this preparatory work. International, governmental and nongovernmental organizations liaising with the IEC also participate in this preparation. IEC collaborates closely with the International Organization for Standardization (ISO) in accordance with conditions determined by agreement between the two organizations.
- 2) The formal decisions or agreements of IEC on technical matters express, as nearly as possible, an international consensus of opinion on the relevant subjects since each technical committee has representation from all interested IEC National Committees.
- 3) IEC Publications have the form of recommendations for international use and are accepted by IEC National Committees in that sense. While all reasonable efforts are made to ensure that the technical content of IEC Publications is accurate, IEC cannot be held responsible for the way in which they are used or for any misinterpretation by any end user.
- 4) In order to promote international uniformity, IEC National Committees undertake to apply IEC Publications transparently to the maximum extent possible in their national and regional publications. Any divergence between any IEC Publication and the corresponding national or regional publication shall be clearly indicated in the latter.
- 5) IEC itself does not provide any attestation of conformity. Independent certification bodies provide conformity assessment services and, in some areas, access to IEC marks of conformity. IEC is not responsible for any services carried out by independent certification bodies.
- 6) All users should ensure that they have the latest edition of this publication.
- 7) No liability shall attach to IEC or its directors, employees, servants or agents including individual experts and members of its technical committees and IEC National Committees for any personal injury, property damage or other damage of any nature whatsoever, whether direct or indirect, or for costs (including legal fees) and expenses arising out of the publication, use of, or reliance upon, this IEC Publication or any other IEC Publications.
- 8) Attention is drawn to the Normative references cited in this publication. Use of the referenced publications is indispensable for the correct application of this publication.
- 9) IEC draws attention to the possibility that the implementation of this document may involve the use of (a) patent(s). IEC takes no position concerning the evidence, validity or applicability of any claimed patent rights in respect thereof. As of the date of publication of this document, IEC had not received notice of (a) patent(s), which may be required to implement this document. However, implementers are cautioned that this may not represent the latest information, which may be obtained from the patent database available at https://patents.iec.ch. IEC shall not be held responsible for identifying any or all such patent rights.

IEC TR 63401-3 has been prepared by subcommittee 8A: Grid Integration of Renewable Energy Generation, of IEC technical committee 8: System aspects of electrical energy supply. It is a Technical Report.

- 7 -

The text of this Technical Report is based on the following documents:

Draft	Report on voting
8A/130/DTR	8A/150/RVDTR

Full information on the voting for its approval can be found in the report on voting indicated in the above table.

The language used for the development of this Technical Report is English.

This document was drafted in accordance with ISO/IEC Directives, Part 2, and developed in accordance with ISO/IEC Directives, Part 1 and ISO/IEC Directives, IEC Supplement, available at www.iec.ch/members_experts/refdocs. The main document types developed by IEC are described in greater detail at www.iec.ch/standardsdev/publications.

A list of all parts in the IEC 63401 series, published under the general title *Dynamic characteristics of inverter-based resources in bulk power systems*, can be found on the IEC website.

The committee has decided that the contents of this document will remain unchanged until the stability date indicated on the IEC website under webstore.iec.ch in the data related to the specific document. At this date, the document will be

- reconfirmed,
- withdrawn, or
- revised.

IMPORTANT – The "colour inside" logo on the cover page of this document indicates that it contains colours which are considered to be useful for the correct understanding of its contents. Users should therefore print this document using a colour printer.

– 8 –

IEC TR 63401-3:2023 © IEC 2023

INTRODUCTION

Primary frequency response (PFR) denotes the autonomous reaction of system resources to change in frequency. In most power systems, the main contributor to PFR is the governor response of synchronous generation. In the systems with less synchronous generators, the system inertia is relatively low and PFR capability is relatively weak and slow, so the system frequency tends to change dramatically in severe power imbalance disturbances, which will trigger under-frequency load shedding (UFLS) or OPC (over speed protection control) of synchronous generators possibly. Therefore, it is an effective coping method to introduce some new frequency responses in the systems with high penetration of inverter-based resources.

This document studies fast frequency response (FFR) as a potential mitigation option in maintaining grid security during severe frequency disturbances. Broadly, FFR is some kind of rapid injection of electrical power from inverter-based resources or relief of loads that helps arrest the decline of system frequency during severe disturbances.

-9-

DYNAMIC CHARACTERISTICS OF INVERTER-BASED RESOURCES IN BULK POWER SYSTEMS –

Part 3: Fast frequency response and frequency ride-through from inverter-based resources during severe frequency disturbances

1 Scope

This part of IEC 63401, which is a Technical Report, provides an insight into the various forms of fast frequency response and frequency ride-through techniques that involve inverter-based generation sources (mainly wind and PV) in a bulk electrical system.

This document first focuses on extracting the clear definition of FFR from different references around the world, while studying the mechanism of FFR acting on system frequency and the unique features of FFR. It then compares various kinds of frequency response and demonstrates the relationship among synchronous inertia response, fast frequency response, and primary frequency response. Several system needs and conditions where FFR is suitable are identified. This document also focuses on the performance objectives, practicality and capabilities of various non-synchronous resources, and discusses the test methods for verifying FFR capability at different levels. Finally, it focuses on the ROCOF issues and on the robust performances of FFR.

2 Normative references

There are no normative references in this document.