TECHNICAL SPECIFICATION

Artificial pollution tests on high-voltage ceramic and glass insulators to be used on d.c. systems
CONTENTS

FOREWORD .. 4
INTRODUCTION ... 6

1 Scope .. 8
2 Normative references .. 8
3 Terms and definitions .. 8
4 General test requirements .. 11
 4.1 General .. 11
 4.2 Test methods ... 12
 4.3 Arrangement of insulator for test .. 12
 4.3.1 Test configuration ... 12
 4.3.2 Insulator cleaning ... 12
 4.4 Requirements for the test circuit ... 13
 4.4.1 Test voltage .. 13
 4.4.2 Atmospheric corrections ... 13
 4.4.3 Characteristics of the measuring systems .. 13
 4.4.4 Identification of flashover .. 13
5 Salt fog method ... 14
 5.1 General information .. 14
 5.2 Salt solution .. 14
 5.3 Spraying system .. 16
 5.4 Conditions before starting the test ... 19
 5.5 Preconditioning process .. 19
 5.6 Withstand test .. 20
 5.7 Acceptance criteria for the withstand test .. 20
6 Solid layer method .. 20
 6.1 General information .. 20
 6.2 Main characteristics of inert materials .. 21
 6.3 Composition of the contaminating suspension ... 21
 6.4 Application of the pollution layer ... 22
 6.5 Determination of the degree of pollution of the test insulator .. 23
 6.6 Test procedure .. 23
 6.7 Withstand test and acceptance criteria .. 24
Annex A (informative) Method for checking the uniformity of the layer ... 25
 A.1 General .. 25
 A.2 Contamination practice ... 29
 A.3 Drying of the pollution layer ... 29
 A.4 Checking the wetting action of the fog .. 29
Annex B (informative) Determination of the withstand characteristics of insulators 27
 B.1 General .. 27
 B.2 Determination of the maximum withstand degree of pollution at a given test voltage 27
 B.3 Determination of the maximum withstand voltage at a given degree of pollution 27
 B.4 Determination of the 50 % withstand voltage at a given degree of pollution 28
Annex C (informative) Additional recommendations concerning the solid layer method procedures .. 29
 C.1 General .. 29
 C.2 Contamination practice ... 29
 C.3 Drying of the pollution layer ... 29
 C.4 Checking the wetting action of the fog .. 29
INTERNATIONAL ELECTROTECHNICAL COMMISSION

ARTIFICIAL POLLUTION TESTS ON HIGH-VOLTAGE CERAMIC AND GLASS INSULATORS TO BE USED ON D.C. SYSTEMS

FOREWORD

1) The International Electrotechnical Commission (IEC) is a worldwide organization for standardization comprising all national electrotechnical committees (IEC National Committees). The object of IEC is to promote international co-operation on all questions concerning standardization in the electrical and electronic fields. To this end and in addition to other activities, IEC publishes International Standards, Technical Specifications, Technical Reports, Publicly Available Specifications (PAS) and Guides (hereafter referred to as "IEC Publication(s)"). Their preparation is entrusted to technical committees; any IEC National Committee interested in the subject dealt with may participate in this preparatory work. International, governmental and non-governmental organizations liaising with the IEC also participate in this preparation. IEC collaborates closely with the International Organization for Standardization (ISO) in accordance with conditions determined by agreement between the two organizations.

2) The formal decisions or agreements of IEC on technical matters express, as nearly as possible, an international consensus of opinion on the relevant subjects since each technical committee has representation from all interested IEC National Committees.

3) IEC Publications have the form of recommendations for international use and are accepted by IEC National Committees in that sense. While all reasonable efforts are made to ensure that the technical content of IEC Publications is accurate, IEC cannot be held responsible for the way in which they are used or for any misinterpretation by any end user.

4) In order to promote international uniformity, IEC National Committees undertake to apply IEC Publications transparently to the maximum extent possible in their national and regional publications. Any divergence between any IEC Publication and the corresponding national or regional publication shall be clearly indicated in the latter.

5) IEC itself does not provide any attestation of conformity. Independent certification bodies provide conformity assessment services and, in some areas, access to IEC marks of conformity. IEC is not responsible for any services carried out by independent certification bodies.

6) All users should ensure that they have the latest edition of this publication.

7) No liability shall attach to IEC or its directors, employees, servants or agents including individual experts and members of its technical committees and IEC National Committees for any personal injury, property damage or other damage of any nature whatsoever, whether direct or indirect, or for costs (including legal fees) and expenses arising out of the publication, use of, or reliance upon, this IEC Publication or any other IEC Publications.

8) Attention is drawn to the normative references cited in this publication. Use of the referenced publications is indispensable for the correct application of this publication.

9) Attention is drawn to the possibility that some of the elements of this IEC Publication may be the subject of patent rights. IEC shall not be held responsible for identifying any or all such patent rights.

The main task of IEC technical committees is to prepare International Standards. In exceptional circumstances, a technical committee may propose the publication of a technical specification when

- the required support cannot be obtained for the publication of an International Standard, despite repeated efforts, or
- the subject is still under technical development or where, for any other reason, there is the future but no immediate possibility of an agreement on an International Standard.

Technical specifications are subject to review within three years of publication to decide whether they can be transformed into International Standards.

IEC TS 61245, which is a technical specification, has been prepared by IEC technical committee 36: Insulators.

This second edition cancels and replaces the first edition published in 1993. This edition constitutes a technical revision.
This edition includes the following significant technical changes with respect to the previous edition:

a) Corrections and the addition of explanatory material;
b) The addition of Clause 4.4.2 on atmospheric correction;
c) The change of upper limit of volume conductivity of tap water for insulator cleaning to 0.1 S/m;
d) The extension to UHV voltages; and
e) The addition of Annex B "Determination of the withstand characteristics of insulators" and Annex E "Supplementary information on artificial pollution tests on insulators for voltage systems of ± 600 kV and above (solid layer method procedure B)"

The text of this technical specification is based on the following documents:

<table>
<thead>
<tr>
<th>Enquiry draft</th>
<th>Report on voting</th>
</tr>
</thead>
<tbody>
<tr>
<td>36/352/DTS</td>
<td>36/359/RVC</td>
</tr>
</tbody>
</table>

Full information on the voting for the approval of this technical specification can be found in the report on voting indicated in the above table.

This publication has been drafted in accordance with the ISO/IEC Directives, Part 2.

The committee has decided that the contents of this publication will remain unchanged until the stability date indicated on the IEC website under "http://webstore.iec.ch" in the data related to the specific publication. At this date, the publication will be

- transformed into an International standard,
- reconfirmed,
- withdrawn,
- replaced by a revised edition, or
- amended.

A bilingual version of this publication may be issued at a later date.

The contents of the corrigendum of August 2018 have been included in this copy.
INTRODUCTION

The electrical strength of d.c. insulation under pollution conditions determines, in many cases, the dimensions and the design of the insulation.

The d.c. test procedures as specified in this technical specification follow closely the ones established for a.c. by IEC 60507. This does not exclude the possibility that at a later time other d.c. test procedures will be defined.

The main differences between this technical specification and IEC 60507 are:

- test circuit requirements include ripple factor, voltage drop and voltage overshoot. No requirements are made for the minimum short circuit current or ratio between short circuit and leakage currents;
- different criteria for the identification of flashover are given;
- for the salt fog test, a pre-conditioning process with d.c. voltage may be used by agreement;
- the wetting rate, rather than the steam injection rate, is prescribed; the measurement of the layer conductance is used to check the wetting action of the fog;
- as regards the solid layer methods, only the test procedure type "B" is considered due to the high scatter of the results obtained with tests carried out according to the type "A" procedure.

The tests are deemed to be not a suitable measure to prove the insulation performance of polymeric or special types of insulators (e.g. insulators with semiconducting glaze or covered with any organic insulating material) under polluted conditions. The test procedures given in this standard do not take account of the different properties of insulators such as surface hydrophobicity and hydrophobicity transfer through the pollution layer etc. These questions are under consideration by CIGRE SC D1.

For the test methods described in this technical specification, it is recommended that the voltage for the withstand voltage tests be specified as the highest value of operating voltage which occurs under normal operating conditions. Other test voltages may be agreed upon. If not otherwise specified and agreed between the parties, voltage of the negative polarity will be applied.

Only those test methods in which the voltage is held constant during the whole test are considered suitable for standardization. Variants in which the voltage is raised continuously to flashover are not included in this technical specification.

The leakage current may be used for interpretation of the test results, and therefore it is recommended that this current be continuously measured during the artificial pollution tests.

To achieve repeatable results, the artificial layer for d.c. pollution tests should be as uniform as possible, since non-uniformity can influence d.c. withstand and flashover voltages.

The amount of non-soluble material on the insulator surface may affect the test results. Although this matter is under consideration and no requirements can be given, the definition of non-soluble deposit density has been introduced into this technical specification for reference.

The type and quantity of non-soluble material, the steam rate and the preconditioning procedure with salt fog (either by a.c. or d.c. voltage) may affect the test results.
The standard results are intended as results obtained in laboratories close to sea level (altitude \(\leq 1 \, 000 \) m). Test results obtained at higher altitude or in test chambers with non-standard air densities are to be corrected for air density.
1 Scope

This technical specification is applicable for the determination of the d.c. withstand characteristics of ceramic and glass insulators to be used outdoors and exposed to polluted atmospheres, on d.c. systems with the highest voltage of the system greater than ± 1 000 V.

These tests are not applicable to polymeric insulators, to greased insulators or to special types of insulators (e.g. insulators with semiconducting glaze or covered with any organic insulating material).

The object of this technical specification is to prescribe procedures for artificial pollution tests applicable to insulators for overhead lines, substations and traction lines and to bushings.

It may also be applied to hollow insulators with suitable precautions to avoid internal flashover. In applying these procedures to apparatus incorporating hollow insulators, the relevant technical committees should consider their effect on any internal equipment and the special precautions which may be necessary.

2 Normative references

The following documents, in whole or in part, are normatively referenced in this document and are indispensable for its application. For dated references, only the edition cited applies. For undated references, the latest edition of the referenced document (including any amendments) applies.

IEC TS 60815-1, Selection and dimensioning of high-voltage insulators intended for use in polluted conditions – Part 1: Definitions, information and general principles

IEC 60060-1, High-voltage test techniques – Part 1: General definitions and test requirements

IEC 60060-2, High-voltage test techniques – Part 2: Measuring systems