TECHNICAL SPECIFICATION

Ultrasonics – Measurements of electroacoustical parameters and acoustic output power of spherically curved transducers using the self-reciprocity method
CONTENTS

FOREWORD ... 5

INTRODUCTION ... 7

1 Scope .. 8

2 Normative references ... 8

3 Terms and definitions .. 8

4 Symbols .. 12

5 General .. 13

6 Requirements of the measurement system .. 14

 6.1 Apparatus configuration .. 14

 6.2 Measurement water tank .. 14

 6.3 Fixturing, positioning and orientation systems .. 14

 6.4 Reflector ... 14

 6.5 Current monitor (probe) ... 14

 6.6 Oscilloscope .. 15

 6.7 Measurement hydrophone ... 15

7 Measurement of the effective half-aperture of the spherically curved transducer 15

 7.1 Setup .. 15

 7.2 Alignment and positioning of the hydrophone in the field ... 15

 7.3 Measurements of the beamwidth and the effective half-aperture 15

 7.4 Calculations of the focus half-angle and the effective area .. 16

8 Measurements of the electroacoustical parameters and the acoustic output power 16

 8.1 Self-reciprocity method for transducer calibration ... 16

 8.1.1 Experimental procedures ... 16

 8.1.2 Criterion for checking the linearity of the focused field 16

 8.1.3 Criterion for checking the reciprocity of the transducer 16

 8.2 Calculations of the transmitting response to current (voltage) and voltage sensitivity .. 17

 8.3 Calculations of the transmitting response at geometric focus to current (voltage) ... 17

 8.4 Calculation of the pulse-echo sensitivity level ... 18

 8.5 Measurements of the radiation conductance and the mechanical quality factor Q_m .. 18

 8.5.1 Calculations of the acoustic output power and the radiation conductance 18

 8.5.2 Measurement of the frequency response of the radiation conductance 18

 8.6 Measurement of the electroacoustic efficiency .. 18

 8.6.1 Calculation of the electric input power ... 18

 8.6.2 Calculation of the electroacoustic efficiency ... 18

 8.7 Measurement of the electric impedance (admittance) .. 19

9 Measurement uncertainty .. 19

Annex A (informative) Relation of the average amplitude reflection coefficient on a plane interface of water-stainless steel and the focus half-angle for a normally incident beam of a circular spherically curved transducer [1, 2] ... 20

Annex C (informative) Calculation of the diffraction correction coefficient $G_{sf}(R/\lambda, \beta)$ in the free-field self-reciprocity calibration in a non-attenuating medium for a circular spherically curved transducer [2, 3, 4, 7] .. 26

Annex D (informative) Speed of sound and attenuation in water .. 28
D.1 General ... 28
D.2 Speed of sound for propagation in water ... 28
D.3 Acoustic attenuation coefficient for propagation in water .. 28

Annex E (informative) Principle of reciprocity calibration for spherically curved transducers [2, 3, 4].. 29
E.1 Principle of reciprocity calibration for an ideal spherically focused field of a transducer ... 29
E.2 Principle of reciprocity calibration of a real spherically focused field of a transducer .. 30
E.3 Self-reciprocity calibration of a spherically curved transducer .. 30

Annex F (informative) Experimental arrangements .. 35
F.1 Experimental arrangement for determining the effective radius of a transducer [2, 3, 4, 13] .. 35
F.2 Experimental arrangement of the self-reciprocity calibration method for a spherically curved transducer [2, 3, 4, 13] ... 35

Annex G (informative) Relationships between the electroacoustical parameters used in this application [13] ... 37
G.1 Relations between the free-field transmitting response to voltage (current) and the voltage sensitivity with the radiation conductance ... 37
G.2 Relation of the radiation conductance and the electroacoustic efficiency .. 38
G.3 Relation of the transmitting response and voltage and acoustic output power .. 38
G.4 Relation of the pulse echo sensitivity and the radiation conductance .. 38

Annex H (informative) Evaluation and expression of uncertainty in the measurements of the radiation conductance ... 39
H.1 Executive standard .. 39
H.2 Evaluation of uncertainty in the measurement of the radiation conductance .. 39
H.2.1 Mathematical expression .. 39
H.2.2 Type A evaluation of standard uncertainty ... 40
H.2.3 Type B evaluation of standard uncertainty ... 40
H.2.4 Evaluation of the combined standard uncertainty for the radiation conductance .. 42

Bibliography ... 46

Figure A.1 – Relation curve of the amplitude reflection coefficient $r(\theta)$ on the interface of water-stainless steel for a plane wave with the incident angle θ .. 22

Figure A.2 – Average amplitude reflection coefficient $r_{av}(\beta)$ on the plane interface of water-stainless steel in the geometric focal plane of a spherically curved transducer vs. the focus half-angle β ... 23

Figure C.1 – Geometry of the concave radiating surface \mathcal{A} of a spherically curved transducer and its virtual image surface \mathcal{A}' for their symmetry of mirror-images about the geometric focal plane $(x, y, 0)$... 26

Figure E.1 – Spherical coordinates .. 31

Figure E.2 Function $G_{\varphi}(kasin\theta)$, diffraction pattern $F_0(kasin\theta)$ and $F_0^2(kasin\theta)$ in the geometric focal plane [7] ... 32

Figure F.1 – Scheme of the measurement apparatus for determining the effective half-aperture of a transducer ... 35
Figure F.2 – Scheme of free-field self-reciprocity method applied to a spherically curved transducer ...

Table A.1 – Parameters used in calculation of the average amplitude reflection coefficient...

Table A.2 – Amplitude reflection coefficient \(r(\theta_i) \) on a plane interface of water-stainless steel for plane wave vs. the incident angle \(\theta_i \) ...

Table A.3 – Average amplitude reflection coefficient \(r_{av}(\beta) \) on a plane interface of water-stainless steel in the geometric focal plane of a spherically curved transducer vs. the focus half-angle \(\beta \)..

Table A.4 – Amplitude reflection coefficient \(r(\theta_i) \) on a plane interface of water-stainless steel for plane wave vs. the incident angle \(\theta_i \) ..

Table B.1 – Diffraction correction coefficients \(G_{sf} \) of a circular spherically curved transducer in the self-reciprocity calibration method [2, 3, 4] ...

Table D.1 – Dependence of speed of sound in water on temperature [5] ...

Table E.1 – \(G_a \) values dependent on \(k \sin \theta \) for \(\beta \leq 45^\circ \) where \(x = k \sin \theta \) (according to O’Neil [7]) ..

Table E.2 – The \((R/\lambda)_{\min} \) values dependent on \(\beta \) when \(\theta_{\max} \leq \theta_{Ga} \) and \(\beta < 45^\circ \) for \(G_a \) = 0,94; 0,95; 0,96; 0,97; 0,99 ...
INTERNATIONAL ELECTROTECHNICAL COMMISSION

ULTRASONICS – MEASUREMENTS OF ELECTROACOUSTICAL PARAMETERS AND ACOUSTIC OUTPUT POWER OF SPHERICALLY CURVED TRANSDUCERS USING THE SELF-RECIPROCITY METHOD

FOREWORD

1) The International Electrotechnical Commission (IEC) is a worldwide organization for standardization comprising all national electrotechnical committees (IEC National Committees). The object of IEC is to promote international co-operation on all questions concerning standardization in the electrical and electronic fields. To this end and in addition to other activities, IEC publishes International Standards, Technical Specifications, Technical Reports, Publicly Available Specifications (PAS) and Guides (hereafter referred to as “IEC Publication(s)”). Their preparation is entrusted to technical committees; any IEC National Committee interested in the subject dealt with may participate in this preparatory work. International, governmental and non-governmental organizations liaising with the IEC also participate in this preparation. IEC collaborates closely with the International Organization for Standardization (ISO) in accordance with conditions determined by agreement between the two organizations.

2) The formal decisions or agreements of IEC on technical matters express, as nearly as possible, an international consensus of opinion on the relevant subjects since each technical committee has representation from all interested IEC National Committees.

3) IEC Publications have the form of recommendations for international use and are accepted by IEC National Committees in that sense. While all reasonable efforts are made to ensure that the technical content of IEC Publications is accurate, IEC cannot be held responsible for the way in which they are used or for any misinterpretation by any end user.

4) In order to promote international uniformity, IEC National Committees undertake to apply IEC Publications transparently to the maximum extent possible in their national and regional publications. Any divergence between any IEC Publication and the corresponding national or regional publication shall be clearly indicated in the latter.

5) IEC itself does not provide any attestation of conformity. Independent certification bodies provide conformity assessment services and, in some areas, access to IEC marks of conformity. IEC is not responsible for any services carried out by independent certification bodies.

6) All users should ensure that they have the latest edition of this publication.

7) No liability shall attach to IEC or its directors, employees, servants or agents including individual experts and members of its technical committees and IEC National Committees for any personal injury, property damage or other damage of any nature whatsoever, whether direct or indirect, or for costs (including legal fees) and expenses arising out of the publication, use of, or reliance upon, this IEC Publication or any other IEC Publications.

8) Attention is drawn to the Normative references cited in this publication. Use of the referenced publications is indispensable for the correct application of this publication.

9) Attention is drawn to the possibility that some of the elements of this IEC Publication may be the subject of patent rights. IEC shall not be held responsible for identifying any or all such patent rights.

The main task of IEC technical committees is to prepare International Standards. In exceptional circumstances, a technical committee may propose the publication of a technical specification when

- the required support cannot be obtained for the publication of an International Standard, despite repeated efforts, or
- the subject is still under technical development or where, for any other reason, there is the future but no immediate possibility of an agreement on an International Standard.

Technical specifications are subject to review within three years of publication to decide whether they can be transformed into International Standards.

IEC TS 62903, which is a Technical Specification, has been prepared by IEC technical committee 87: Ultrasonics.
The text of this technical specification is based on the following documents:

<table>
<thead>
<tr>
<th>Enquiry draft</th>
<th>Report on voting</th>
</tr>
</thead>
<tbody>
<tr>
<td>87/652/DTS</td>
<td>87/659/RVDTS</td>
</tr>
</tbody>
</table>

Full information on the voting for the approval of this technical specification can be found in the report on voting indicated in the above table.

This document has been drafted in accordance with the ISO/IEC Directives, Part 2.

In this standard, the following print types are used:

- **terms defined in Clause 3: in bold type.**

The committee has decided that the contents of this document will remain unchanged until the stability date indicated on the IEC website under "http://webstore.iec.ch" in the data related to the specific document. At this date, the document will be

- reconfirmed,
- withdrawn,
- replaced by a revised edition, or
- amended.

A bilingual version of this publication may be issued at a later date.
INTRODUCTION

An ultrasonic transducer is an important acoustic device that can act as a transmitter or a receiver in the applications of medical ultrasound, non-destructive testing, and ultrasonic materials processing. The performance of a transducer is a decisive factor that governs the device's range of applicability, efficiency and quality control in the manufacturing. The mechanisms, transmitting fields, performances, and measurement methods used for these transducers have been studied over the past few decades. However, the electroacoustical characterization and measurement methods applied for spherically curved transducers have not been defined in standard documents for either terms or protocols.

This document defines the relevant electroacoustical parameters for these devices and establishes the self-reciprocity measurement method for spherically curved concave focusing transducers.
ULTRASONICS – MEASUREMENTS OF ELECTROACOUSTICAL PARAMETERS AND ACOUSTIC OUTPUT POWER OF SPHERICALLY CURVED TRANSDUCERS USING THE SELF-RECIROCITY METHOD

1 Scope

This document, which is a Technical Specification, establishes the free-field convergent spherical wave self-reciprocity method for ultrasonic transducer calibration, establishes the measurement conditions and experimental procedure required to determine the transducer’s electroacoustic parameters and acoustic output power using the self-reciprocity method, establishes the criteria for checking the reciprocity of these transducers and the linear range of the focused field, and provides guiding information for the assessment of the overall measurement uncertainties for radiation conductance.

This document is applicable to:

i) circular spherically curved concave focusing transducers without a centric hole working in the linear amplitude range,

ii) measurements in the frequency range 0.5 MHz to 15 MHz, and

iii) acoustic pressure amplitudes in the focused field within the linear amplitude range.

2 Normative references

The following documents are referred to in the text in such a way that some or all of their content constitutes requirements of this document. For dated references, only the edition cited applies. For undated references, the latest edition of the referenced document (including any amendments) applies.