High voltage direct current (HVDC) power transmission – System requirements for DC-side equipment
Part 1: Using line-commutated converters
B.2.4 Bypass switch (BPS) ... 80
B.2.5 Converter paralleling switch ... 81
B.2.6 Line paralleling switch ... 82
B.3 Design .. 83

Bibliography .. 87

Figure 1 – Scope of DC-side equipment for a back-to-back HVDC converter station with one 12-pulse bridge per end ... 14
Figure 2 – Scope of DC-side equipment for a transmission HVDC converter station with one 12-pulse bridge per pole ... 15
Figure 3 – Key for application of test voltages ... 24
Figure 4 – Test circuit for commutation test .. 31
Figure 5 – Typical arrangement of shunt DC filter ... 36
Figure 6 – Typical scheme of a resistor composed of one module 43
Figure 7 – Transient current performance of resistor .. 51
Figure 8 – Operating voltage of a converter bus arrester (CB), rectifier operation 54
Figure A.1 – Main items of DC yard equipment for a typical HVDC transmission scheme ... 59
Figure A.2 – Some commonly used DC filter configurations ... 62
Figure A.3 – Series blocking filter ... 64
Figure A.4 – Resistive voltage divider for measurement of direct voltage 65
Figure A.5 – Operating principle of zero-flux CT (simplified) ... 67
Figure A.6 – Current measurement by resistive shunt using optical powering 68
Figure A.7 – Optical current measurement .. 68
Figure A.8 – Typical arrangement of surge arresters in a converter station with one 12-pulse bridge per pole (only one pole shown) ... 71
Figure A.9 – Electrode line monitoring by AC current injection .. 73
Figure B.1 – Typical arrangement of DC switching devices for a bipolar transmission scheme with one 12-pulse bridge per pole ... 75
Figure B.2 – Typical arrangement of bypass switches and disconnectors for a bipolar transmission scheme with two 12-pulse bridges per pole .. 76
Figure B.3 – Example arrangement of line paralleling switches for a bipolar HVDC transmission scheme .. 76
Figure B.4 – Example arrangement of converter paralleling switches for a bipolar HVDC transmission scheme ... 82
Figure B.5 – Commutation switch based on the divergent current oscillation method, without (left) and with (right) making switch ... 84
Figure B.6 – Oscillogram of a commutation event ... 85
Figure B.7 – Commutation switch with pre-charged capacitor .. 86
Figure B.8 – Parallel arrangement of switches used at very high current 86

Table 1 – Summary of main parameters affecting specification of high-speed DC switches .. 19
Table 2 – Table of standard ratings in accordance with IEC 62271-100 and their applicability to high-speed DC switches ... 20
Table 3 – Test conditions for direct voltage test .. 25
Table 4 – Test conditions for partial discharge test ... 25
Table 5 – Test conditions for polarity reversal test ... 26
Table 6 – Test conditions for RIV test .. 27
Table 7 – Test conditions for lightning-impulse withstand test ... 28
Table 8 – Test conditions for switching impulse withstand test .. 29
Table 9 – Test conditions for power frequency withstand test .. 29
Table 10 – Table of standard ratings in accordance with IEC 62271-102 and their applicability to HVDC disconnectors and earthing switches ... 32
Table 11 – Ratings for resistors .. 42
Table 12 – Recommended temperature and temperature rise limits for bolted and welded connections .. 46
Table B.1 – Summary of main parameters affecting specification of MRTS and ERTS 78
Table B.2 – Summary of main parameters affecting specification of NBS 79
Table B.3 – Summary of main parameters affecting specification of NBES 80
Table B.4 – Summary of main parameters affecting specification of BPS 81
Table B.5 – Summary of main parameters affecting specification of CPS 82
Table B.6 – Summary of main parameters affecting specification of LPS 83
INTRODUCTION

1) The International Electrotechnical Commission (IEC) is a worldwide organization for standardization comprising all national electrotechnical committees (IEC National Committees). The object of IEC is to promote international co-operation on all questions concerning standardization in the electrical and electronic fields. To this end and in addition to other activities, IEC publishes International Standards, Technical Specifications, Technical Reports, Publicly Available Specifications (PAS) and Guides (hereafter referred to as “IEC Publication(s)”). Their preparation is entrusted to technical committees; any IEC National Committee interested in the subject dealt with may participate in this preparatory work. International, governmental and non-governmental organizations liaising with the IEC also participate in this preparation. IEC collaborates closely with the International Organization for Standardization (ISO) in accordance with conditions determined by agreement between the two organizations.

2) The formal decisions or agreements of IEC on technical matters express, as nearly as possible, an international consensus of opinion on the relevant subjects since each technical committee has representation from all interested IEC National Committees.

3) IEC Publications have the form of recommendations for international use and are accepted by IEC National Committees in that sense. While all reasonable efforts are made to ensure that the technical content of IEC Publications is accurate, IEC cannot be held responsible for the way in which they are used or for any misinterpretation by any end user.

4) In order to promote international uniformity, IEC National Committees undertake to apply IEC Publications transparently to the maximum extent possible in their national and regional publications. Any divergence between any IEC Publication and the corresponding national or regional publication shall be clearly indicated in the latter.

5) IEC itself does not provide any attestation of conformity. Independent certification bodies provide conformity assessment services and, in some areas, access to IEC marks of conformity. IEC is not responsible for any services carried out by independent certification bodies.

6) All users should ensure that they have the latest edition of this publication.

7) No liability shall attach to IEC or its directors, employees, servants or agents including individual experts and members of its technical committees and IEC National Committees for any personal injury, property damage or other damage of any nature whatsoever, whether direct or indirect, or for costs (including legal fees) and expenses arising out of the publication, use of, or reliance upon, this IEC Publication or any other IEC Publications.

8) Attention is drawn to the Normative references cited in this publication. Use of the referenced publications is indispensable for the correct application of this publication.

9) Attention is drawn to the possibility that some of the elements of this IEC Publication may be the subject of patent rights. IEC shall not be held responsible for identifying any or all such patent rights.

The main task of IEC technical committees is to prepare International Standards. In exceptional circumstances, a technical committee may propose the publication of a technical specification when

- the required support cannot be obtained for the publication of an International Standard, despite repeated efforts, or
- the subject is still under technical development or where, for any other reason, there is the future but no immediate possibility of an agreement on an International Standard.

Technical specifications are subject to review within three years of publication to decide whether they can be transformed into International Standards.

IEC TS 63014, which is a Technical Specification, has been prepared by IEC technical committee 115: High Voltage Direct Current (HVDC) transmission for DC voltages above 100 kV.
The text of this Technical Specification is based on the following documents:

<table>
<thead>
<tr>
<th>Enquiry draft</th>
<th>Report on voting</th>
</tr>
</thead>
<tbody>
<tr>
<td>115/167/DTS</td>
<td>115/178/RVDTS</td>
</tr>
</tbody>
</table>

Full information on the voting for the approval of this technical specification can be found in the report on voting indicated in the above table.

This document has been drafted in accordance with the ISO/IEC Directives, Part 2.

The committee has decided that the contents of this document will remain unchanged until the stability date indicated on the IEC website under "http://webstore.iec.ch" in the data related to the specific document. At this date, the document will be

- reconfirmed,
- withdrawn,
- replaced by a revised edition, or
- amended.

A bilingual version of this publication may be issued at a later date.

IMPORTANT – The ‘colour inside’ logo on the cover page of this publication indicates that it contains colours which are considered to be useful for the correct understanding of its contents. Users should therefore print this document using a colour printer.
1 Scope

This Technical Specification is intended to provide an overall and consistent set of guidelines to facilitate the specification of equipment for the DC-side of a high-voltage direct current (HVDC) system using line-commutated converters. For point-to-point HVDC transmission systems, this document covers all DC-side equipment located between the converter valves and the DC overhead line or cable termination, excluding the converter valves themselves. For back-to-back HVDC systems, this document covers all DC-side equipment excluding the converter valves themselves. Throughout this publication, the terms 'direct voltage' and 'DC voltage' are used interchangeably, as are 'direct current' and 'DC current'.

Traditionally, the largest items of such equipment, such as the DC smoothing reactor and DC harmonic filters, have generally been located outdoors but increasingly the trend is to locate such equipment indoors (although not in the valve hall itself) to provide protection from pollution. Although product standards exist for some DC-side equipment types, many such items of equipment have only standards written for AC applications and, in such cases, the purpose of this document is to provide guidance as to how to specify the additional requirements (particularly with regard to testing) for such equipment to cover their use in DC conditions.

The converter itself is excluded from this scope, being covered by IEC 60700-1 [1] and IEC 60700-2 [2].

Although this document includes requirements for DC disconnectors and certain types of specialised DC switching devices (such as the Metallic Return Transfer Switch (MRTS)), it excludes any type of DC circuit-breaker designed to interrupt fault currents.

DC-side equipment for HVDC systems based on voltage-sourced converter (VSC) technology is excluded from this document and will be covered in a future Part 2 of IEC 63014.

2 Normative references

The following documents are referred to in the text in such a way that some or all of their content constitutes requirements of this document. For dated references, only the edition cited applies. For undated references, the latest edition of the referenced document (including any amendments) applies.

IEC 60060-1, High-voltage test techniques – Part 1: General definitions and test requirements

IEC 60071-1, Insulation co-ordination – Part 1: Definitions, principles and rules

IEC 60071-5, Insulation co-ordination – Part 5: Procedures for high-voltage direct current (HVDC) converter stations

1 Numbers in square brackets refer to the Bibliography.

IEC 60168, Tests on indoor and outdoor post insulators of ceramic material or glass for systems with nominal voltages greater than 1000 V

IEC 60353, Line traps for a.c. power systems

IEC 60358-1, Coupling capacitors and capacitor dividers – Part 1: General rules

IEC 60383 (all parts), Insulators for overhead lines with a nominal voltage above 1 000 V

IEC 60437, Radio interference test on high-voltage insulators

IEC 60633, Terminology for high-voltage direct current (HVDC) transmission

IEC TS 60815-4, Selection and dimensioning of high-voltage insulators intended for use in polluted conditions – Part 4: Insulators for d.c. systems

IEC 60871-1:2014, Shunt capacitors for a.c. power systems having a rated voltage above 1 000 V – Part 1: General

IEC 60871-4:2014, Shunt capacitors for AC power systems having a rated voltage above 1 000 V – Part 4: Internal fuses

IEC TS 61245, Artificial pollution tests on high-voltage ceramic and glass insulators to be used on d.c. systems

IEC 61462, Composite hollow insulators – Pressurized and unpressurized insulators for use in electrical equipment with rated voltage greater than 1000 V – Definitions, test methods, acceptance criteria and design recommendations

IEC 61466 (all parts), Composite string insulator units for overhead lines with a nominal voltage greater than 1 000 V

IEC 61850-9-2, Communication networks and systems for power utility automation – Part 9-2: Specific communication service mapping (SCSM) – Sampled values over ISO/IEC 8802-3

IEC 61869-9, Instrument transformers – Part 9: Digital interface for instrument transformers

IEC 61869-14, Instrument transformers – Part 14: Specific requirements for DC current transformers

IEC 61869-15, Instrument transformers – Part 15: Specific requirements for DC voltage transformers

IEC TS 61936-2, Power installations exceeding 1 kV AC and 1,5 kV DC – Part 2: DC

IEC 62217, Polymeric HV insulators for indoor and outdoor use – General definitions, test methods and acceptance criteria

IEC 62231, Composite station post insulators for substations with a.c. voltages greater than 1 000 V up to 245 kV – Definitions, test methods and acceptance criteria

IEC 62271-1, High-voltage switchgear and controlgear – Part 1: Common specifications for alternating current switchgear and controlgear

IEC 62271-100:2008, High-voltage switchgear and controlgear – Part 100: Alternating current circuit-breakers

IEC 62772, Composite hollow core station post insulators for substations with a.c. voltage greater than 1 000 V and d.c. voltage greater than 1 500 V – Definitions, test methods and acceptance criteria

IEC TS 62896, Hybrid insulators for AC and DC for high-voltage applications – Definitions, test methods and acceptance criteria

IEC Guide No. 111, Electrical high-voltage equipment in high-voltage substations – Common recommendations for product standards

IEC/IEEE 65700-19-03:2014, Bushings for DC application