Small bore connectors for liquids and gases in healthcare applications —

Part 6:
Connectors for neuraxial applications

Raccords destinés à des applications en contact avec le système nerveux (neuraxiales) —

Partie 6: Raccords destinés à des applications en contact avec le système nerveux (neuraxiales)
Contents

<table>
<thead>
<tr>
<th>Section</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>Foreword</td>
<td>iv</td>
</tr>
<tr>
<td>Introduction</td>
<td>v</td>
</tr>
<tr>
<td>1 * Scope</td>
<td>1</td>
</tr>
<tr>
<td>2 Normative references</td>
<td>1</td>
</tr>
<tr>
<td>3 Terms and definitions</td>
<td>2</td>
</tr>
<tr>
<td>4 General requirements</td>
<td>3</td>
</tr>
<tr>
<td>4.1 General requirements for the neuraxial APPLICATION</td>
<td>3</td>
</tr>
<tr>
<td>4.2 * Material used for SMALL-BORE CONNECTORS</td>
<td>4</td>
</tr>
<tr>
<td>4.3 TYPE TESTS</td>
<td>4</td>
</tr>
<tr>
<td>5 Dimensional requirements for neuraxial SMALL-BORE CONNECTORS</td>
<td>4</td>
</tr>
<tr>
<td>6 Performance requirements</td>
<td>4</td>
</tr>
<tr>
<td>6.1 Fluid leakage</td>
<td>4</td>
</tr>
<tr>
<td>6.1.1 Fluid leakage requirement</td>
<td>4</td>
</tr>
<tr>
<td>6.1.2 Leakage by pressure decay</td>
<td>4</td>
</tr>
<tr>
<td>6.1.3 Positive pressure liquid leakage</td>
<td>4</td>
</tr>
<tr>
<td>6.2 Subatmospheric pressure air leakage</td>
<td>5</td>
</tr>
<tr>
<td>6.3 Stress cracking</td>
<td>5</td>
</tr>
<tr>
<td>6.4 Resistance to separation from axial load</td>
<td>5</td>
</tr>
<tr>
<td>6.5 Resistance to separation from unscrewing</td>
<td>5</td>
</tr>
<tr>
<td>6.6 Resistance to overriding</td>
<td>5</td>
</tr>
<tr>
<td>Annex A (informative) Rationale and guidance</td>
<td>6</td>
</tr>
<tr>
<td>Annex B (normative) * SMALL-BORE CONNECTORS for neuraxial APPLICATIONs</td>
<td>11</td>
</tr>
<tr>
<td>Annex C (normative) Reference CONNECTORS for testing SMALL-BORE CONNECTORS for neuraxial APPLICATION</td>
<td>20</td>
</tr>
<tr>
<td>Annex D (informative) Assessment of MEDICAL DEVICES and their attributes with CONNECTIONS within this APPLICATION</td>
<td>26</td>
</tr>
<tr>
<td>Annex E (informative) Summary of the usability requirements for SMALL-BORE CONNECTORS for neuraxial APPLICATIONS</td>
<td>27</td>
</tr>
<tr>
<td>Annex F (informative) Summary of SMALL-BORE CONNECTOR design requirements for neuraxial APPLICATIONS</td>
<td>30</td>
</tr>
<tr>
<td>Annex G (informative) Summary of assessment of the design of the SMALL BORE CONNECTORS for neuraxial APPLICATIONS</td>
<td>33</td>
</tr>
<tr>
<td>Annex H (normative) Mechanical tests for verifying NON-INTERCONNECTABLE characteristics</td>
<td>37</td>
</tr>
<tr>
<td>Annex I (informative) Reference to the essential principles</td>
<td>41</td>
</tr>
<tr>
<td>Annex J (informative) Terminology — alphabetized index of defined terms</td>
<td>43</td>
</tr>
<tr>
<td>Bibliography</td>
<td>44</td>
</tr>
</tbody>
</table>
Foreword

ISO (the International Organization for Standardization) is a worldwide federation of national standards bodies (ISO member bodies). The work of preparing International Standards is normally carried out through ISO technical committees. Each member body interested in a subject for which a technical committee has been established has the right to be represented on that committee. International organizations, governmental and non-governmental, in liaison with ISO, also take part in the work. ISO collaborates closely with the International Electrotechnical Commission (IEC) on all matters of electrotechnical standardization.

The procedures used to develop this document and those intended for its further maintenance are described in the ISO/IEC Directives, Part 1. In particular the different approval criteria needed for the different types of ISO documents should be noted. This document was drafted in accordance with the editorial rules of the ISO/IEC Directives, Part 2 (see www.iso.org/directives).

Attention is drawn to the possibility that some of the elements of this document may be the subject of patent rights. ISO shall not be held responsible for identifying any or all such patent rights. Details of any patent rights identified during the development of the document will be in the Introduction and/or on the ISO list of patent declarations received (see www.iso.org/patents).

Any trade name used in this document is information given for the convenience of users and does not constitute an endorsement.

For an explanation on the meaning of ISO specific terms and expressions related to conformity assessment, as well as information about ISO’s adherence to the WTO principles in the Technical Barriers to Trade (TBT) see the following URL: Foreword - Supplementary information

The committee responsible for this document is ISO/TC 210, Quality management and corresponding general aspects for medical devices, and IEC/SC62D, Electromedical equipment. The draft was circulated for voting to the national bodies of both ISO and IEC.

ISO 80369 consists of the following parts, under the general title Small-bore connectors for liquids and gases in healthcare applications:

— Part 1: General requirements
— Part 3: Connectors for enteral applications
— Part 5: Connectors for limb cuff inflation applications
— Part 6: Connectors for neuraxial applications
— Part 7: Connectors with 6 % (Luer) taper for intravascular or hypodermic applications
— Part 20: Common test methods

An additional part on connectors for urethral and urinary applications is planned.
Introduction

This part of ISO 80369 was developed because of several incidents, with catastrophic consequences, resulting from inappropriate medication, liquid nutritional formula, or air being administered neuraxially. Many incidents have been reported leading to international recognition of the importance of these issues and a need has been identified to develop specific CONNECTORS for MEDICAL DEVICES and their ACCESSORIES used to deliver fluids in other applications.

The ISO 80369 series was developed to prevent misconnection between SMALL-BORE CONNECTORS used in different APPLICATIONS. ISO 80369-1 specifies the requirements necessary to verify the designs and dimensions of SMALL-BORE CONNECTORS to ensure that

a) they do not misconnect with other small-bore connectors, and

b) they safely and securely connect with their mating half.

ISO 80369-20 contains the common TEST METHODS to support the performance requirements for SMALL-BORE CONNECTORS.

This part of ISO 80369 specifies the design and the dimensions and drawings of SMALL-BORE CONNECTORS intended to be used in neuraxial APPLICATIONS. Annex D to Annex G describe the methods by which this design has been assessed. Other parts of ISO 80369 include requirements for SMALL-BORE CONNECTORS used in different APPLICATION categories.

There is international evidence that ‘wrong-route’ medication errors with neuraxial MEDICAL DEVICES have caused deaths and severe HARM. There are reports of non-epidural medications being administered into the epidural space and local anaesthetic solutions intended for epidural administration being administered by the intravenous route.[1] [9] [14] [15] [19] There is also a report where an anaesthetic agent for intravenous use was administered into the cerebrospinal fluid via an external ventricular drain[11] and earlier reports of antibiotics being inappropriately administered by this route.

In July 2007, the World Health Organization’s World Alliance for Patient Safety issued Alert 115 describing four incidents in different countries in which vincristine had been accidentally administered by the intrathecal route instead of intravenous route, as intended.[1] The Alert indicated that, since 1968, this same error had been reported 55 times from a variety of institutional settings.

These incidents occurred despite repeated warnings of the RISK and the introduction of extensive labelling requirements and recommendations, intended to standardize practice and reduce RISKS.

Other health organizations around the world have also issued detailed guidance to minimize the RISK of these ‘wrong-route’ errors.[9] [15] [20] [21]

Nevertheless, reports of fatal incidents following the administration of vinca alkaloids continue to be reported internationally.[22] In 2009, the Food and Drug Administration in the USA issued a Medical Devices Calendar, which included an example of a case study of a neuraxial misconnection.[12]

CONNECTORS manufactured to the dimensions set out within this International Standard are dimensionally incompatible with any of the other CONNECTORS for APPLICATIONS identified in the ISO 80369 series of standards for SMALL-BORE CONNECTORS, except as indicated in G.2. If fitted to the relevant MEDICAL DEVICES and ACCESSORIES, these CONNECTORS should reduce the RISK of air, non-vascular medication and liquid nutritional formula being delivered via an alternative route, such as neuraxially, intravenously, or via an airway device.

In this International Standard, the following print types are used:

— requirements and definitions: roman type;

— informative material appearing outside of tables, such as notes, examples and references: in smaller type. Normative text of tables is also in a smaller type;

— terms defined in ISO 80369-1 and Clause 3: small capitals.
In this part of ISO 80369, the conjunctive “or” is used as an “inclusive or” so a statement is true, if any combination of the conditions is true.

The verbal forms used in this International Standard conform to usage described in ISO/IEC Directives, Part 2, Annex H. For the purposes of this part of ISO 80369, the auxiliary verb

— “shall” means that compliance with a requirement or a test is mandatory for compliance with this part of ISO 80369,

— “should” means that compliance with a requirement or a test is recommended but is not mandatory for compliance with this part of ISO 80369, and

— “may” is used to describe a permissible way to achieve compliance with a requirement or test.

An asterisk (*) as the first character of a title or at the beginning of a paragraph or table title indicates that there is guidance or rationale related to that item in Annex A.
Small bore connectors for liquids and gases in healthcare applications —

Part 6: Connectors for neuraxial applications

1 *Scope*

This part of ISO 80369 specifies requirements for SMALL-BORE CONNECTORS intended to be used for CONNECTIONS in neuraxial APPLICATIONS. Neuraxial APPLICATIONS involve the use of MEDICAL DEVICES intended to administer medications to neuraxial sites, wound infiltration anaesthesia delivery, and other regional anaesthesia procedures or to monitor or remove cerebro-spinal fluid for therapeutic or diagnostic purposes.

NOTE 1 Sites for the neuraxial APPLICATION include the spine, intrathecal or subarachnoid space, ventricles of the brain, and the epi-, extra-, or peri-dural space. Neuraxial APPLICATION anaesthetics can be administered regionally affecting a large part of the body, such as a limb, and include plexus blocks, such as the branchial plexus blocks or single nerve blocks. Neuraxial APPLICATION procedures include continuous infusion of wounds with local anaesthetic agents.

NOTE 2 For the purposes of this part of ISO 80369, local anaesthesia injected hypodermically is not considered a neuraxial APPLICATION.

EXAMPLES Intended administration includes intrathecal chemotherapy, local anaesthetics, radiological contrast agents, antibiotics, analgesics.

This part of ISO 80369 specifies dimensions and requirements for the design and functional performance of these SMALL-BORE CONNECTORS intended to be used with MEDICAL DEVICES.

This part of ISO 80369 does not specify requirements for the MEDICAL DEVICES or ACCESSORIES that use these CONNECTORS. Such requirements are given in particular International Standards for specific MEDICAL DEVICES or ACCESSORIES.

NOTE 3 Manufacturers are encouraged to incorporate the SMALL-BORE CONNECTORS specified in this part of ISO 80369 into MEDICAL DEVICES, medical systems, or ACCESSORIES, even if currently not required by the relevant particular MEDICAL DEVICE standards. It is expected that when the relevant particular MEDICAL DEVICE standards are revised, requirements for SMALL-BORE CONNECTORS, as specified in this part of ISO 80369, will be included. Furthermore, it is recognized that standards need to be developed for many MEDICAL DEVICES used for neuraxial APPLICATIONS.

NOTE 4 ISO 80369-1:2010, 5.8, specifies alternative methods of compliance with ISO 80369-1:2010, for SMALL-BORE CONNECTORS intended for use with NEURAXIAL APPLICATION MEDICAL DEVICES or ACCESSORIES, which do not comply with this part of ISO 80369.

2 Normative references

The following documents, in whole or in part, are normatively referenced in this document and are indispensable for its application. For dated references, only the edition cited applies. For undated references, the latest edition of the referenced document (including any amendments) applies.

ISO 14971:2007, Medical devices — Application of risk management to medical devices

ISO 80369-1:2010, Small-bore connectors for liquids and gases in healthcare applications — Part 1: General requirements
ISO 80369-6:2016(E)

ISO 80369-20:2015, Small-bore connectors for liquids and gases in healthcare applications — Part 20: Common test methods

ASTM D638-10, Standard test method for tensile properties of plastics

ASTM D790-10, Standard test methods for flexural properties of unreinforced and reinforced plastics and electrical insulating materials

3 Terms and definitions

For the purposes of this document, the terms and definitions given in ISO 14971:2007, ISO 80369-1:2010, and ISO 80369-20:2015 and the following apply.

NOTE For convenience, the sources of all defined terms used in this document are given in Annex J.

3.1 lock connector

connector with a locking mechanism

3.2 normal use

operation, including routine inspection and adjustments by any user, and stand-by, according to the instructions for use

Note 1 to entry: Normal use should not be confused with intended use. While both include the concept of use as intended by the manufacturer, intended use focuses on the medical purpose while normal use incorporates not only the medical purpose, but maintenance, service, transport, etc. as well.

[SOURCE: IEC 60601-1:2005/Amd1:2012, 3.97, modified replaced 'operator' with 'user']

3.3 rated<value> term referring to a value assigned by the manufacturer for a specified operating condition

[SOURCE: IEC 60601-1:2005, 3.97]

3.4 slip connector

connector without a locking mechanism

3.5 user

person interacting with (i.e. operating or handling) the medical device

Note 1 to entry: There can be more than one user of a medical device.

Note 2 to entry: Common users include clinicians, patients, cleaners, maintenance and service personnel.

[SOURCE: IEC 62366-1:2015, 3.24]

3.6 user profile

summary of the mental, physical and demographic traits of an intended user group, as well as any special characteristics, such as occupational skills, job requirements and working conditions, which can have a bearing on design decisions

[SOURCE: IEC 62366-1:2015, 3.29]