Information technology – Generic cabling for customer premises – Part 1: General requirements
CONTENTS

FOREWORD .. 11
INTRODUCTION ... 13

1 Scope ... 15
2 Normative references ... 15
3 Terms, definitions, abbreviations and symbols ... 20
 3.1 Terms and definitions .. 20
 3.2 Abbreviations ... 27
 3.3 Symbols .. 29
 3.3.1 Variables ... 29
 3.3.2 Indices .. 30
4 Conformance .. 30
5 Structure of generic cabling ... 31
 5.1 Functional elements .. 31
 5.2 Interfaces ... 32
 5.3 Cabling subsystems .. 32
 5.3.1 Cabling subsystem 1 .. 32
 5.3.2 Cabling subsystems \(n \geq 2 \) ... 33
 5.3.3 Common subsystems .. 33
 5.3.4 Tie cabling .. 34
 5.3.5 Channel and permanent link ... 34

6 Channel performance requirements .. 34
 6.1 General .. 34
 6.2 Environmental performance .. 34
 6.2.1 General ... 34
 6.2.2 Environmental classification .. 35
 6.3 Balanced cabling transmission performance .. 37
 6.3.1 General ... 37
 6.3.2 Component choice ... 38
 6.3.3 Channel parameters .. 38
 6.4 Coaxial cabling transmission performance ... 64
 6.4.1 General ... 64
 6.4.2 Component choice ... 65
 6.4.3 Channel parameters .. 65
 6.5 Optical fibre cabling transmission performance .. 67
 6.5.1 Component choice ... 67
 6.5.2 Channel parameters .. 67

7 Link performance requirements .. 67
 7.1 General .. 67
 7.2 Balanced cabling .. 68
 7.2.1 General ... 68
 7.2.2 Return loss .. 69
 7.2.3 Insertion loss/attenuation .. 70
 7.2.4 NEXT .. 72
 7.2.5 Attenuation to crosstalk ratio at the near-end ... 76
 7.2.6 Attenuation to crosstalk ratio at the far-end .. 78
 7.2.7 Direct current loop resistance ... 82
7.2.8 Direct current resistance unbalance ... 83
7.2.9 Propagation delay .. 83
7.2.10 Delay skew ... 84
7.2.11 Unbalance attenuation and coupling attenuation 86
7.2.12 Alien crosstalk ... 89
7.3 Coaxial cabling ... 94
7.3.1 General ... 94
7.3.2 Return loss .. 94
7.3.3 Insertion loss ... 94
7.3.4 Direct current loop resistance .. 95
7.3.5 DC current carrying capacity ... 95
7.3.6 Screening attenuation .. 95
7.4 Optical fibre cabling ... 95
8 Reference implementation for backbone cabling subsystems 96
8.1 General .. 96
8.2 Balanced cabling .. 96
8.2.1 Component choice ... 96
8.2.2 Dimensions ... 96
8.3 Optical fibre cabling ... 97
8.3.1 General ... 97
8.3.2 Component selection .. 98
8.3.3 Dimensions ... 98
9 Cable requirements .. 98
9.1 General .. 98
9.2 Operating environment .. 98
9.3 Balanced cables ... 98
9.3.1 Basic requirements ... 98
9.3.2 Balanced cables of Category 5 through 7_A, 8.1 and 8.2 99
9.3.3 Balanced cables of Category BCT-B .. 101
9.4 Coaxial cables ... 103
9.4.1 General ... 103
9.4.2 Environmental characteristics .. 103
9.4.3 Mechanical characteristics ... 103
9.4.4 Electrical characteristics ... 104
9.5 Optical fibre cable (cabled optical fibres) ... 104
9.5.1 Mechanical and environmental characteristics 104
9.5.2 Cabled optical fibre Categories ... 105
10 Connecting hardware requirements ... 106
10.1 General requirements .. 106
10.1.1 Overview ... 106
10.1.2 Location .. 106
10.1.3 Design .. 106
10.1.4 Operating environment .. 107
10.1.5 Mounting .. 109
10.1.6 Installation practices ... 109
10.1.7 Marking and colour coding ... 110
10.2 Category 5 through 7_A, 8.1, and 8.2 connecting hardware for balanced
cabling .. 110
Table 9 – PS NEXT for a channel ... 45
Table 10 – Informative PS NEXT values for a channel at key frequencies 46
Table 11 – Informative ACR-N values for a channel at key frequencies 47
Table 12 – Informative PS ACR-N values for a channel at key frequencies 48
Table 13 – ACR-F for a channel .. 49
Table 14 – Informative ACR-F values for a channel at key frequencies 50
Table 15 – PS ACR-F for a channel ... 51
Table 16 – Informative PS ACR-F values for a channel at key frequencies 52
Table 17 – DC loop resistance for a channel .. 52
Table 18 – Propagation delay for a channel ... 53
Table 19 – Informative propagation delay values for a channel at key frequencies 54
Table 20 – Delay skew for a channel ... 55
Table 21 – TCL for channel for unscreened systems .. 56
Table 22 – Informative TCL values for unscreened channels at key frequencies 56
Table 23 – TCL for Class I and II screened channels 56
Table 24 – Informative TCL values for Class I and II screened channels at key frequencies 57
Table 25 – ELTCTL for channel for unscreened systems 57
Table 26 – Informative ELTCTL values for unscreened channels at key frequencies 58
Table 27 – ELTCTL for Class I and II channels ... 58
Table 28 – Informative ELTCTL values for Class I and II channels at key frequencies 58
Table 29 – Coupling attenuation for a channel for screened systems 59
Table 30 – PS ANEXT for a channel ... 60
Table 31 – Informative PS ANEXT values for a channel at key frequencies 60
Table 32 – PS ANEXT avg for a channel ... 61
Table 33 – Informative PS ANEXT avg values for a channel at key frequencies 61
Table 34 – PS AACR-F for a channel .. 62
Table 35 – Informative PS AACR-F values for a channel at key frequencies 63
Table 36 – PS AACR-F avg for a channel ... 63
Table 37 – Informative PS AACR-F avg values for a channel at key frequencies ... 64
Table 38 – Alien crosstalk and coupling attenuation for screened channels 64
Table 39 – Return loss for a channel ... 65
Table 40 – Insertion loss for a channel .. 65
Table 41 – Informative insertion loss values for a channel at key frequencies 65
Table 42 – DC loop resistance for a channel ... 66
Table 43 – DC current carrying capacity for a channel 66
Table 44 – Operating voltage for a channel .. 66
Table 45 – Screening attenuation for a channel .. 67
Table 46 – Return loss for 2-connection or 3-connection link 69
Table 47 – Informative return loss values for links at key frequencies 70
Table 48 – Insertion loss for 2-connection or 3-connection link 71
Table 49 – Informative insertion loss values for links with maximum implementation at key frequencies ... 72
Table 50 – NEXT for 2-connection or 3-connection link ... 72
Table 51 – Informative NEXT values for links with maximum implementation at key frequencies ... 74
Table 52 – PS NEXT for 2-connection or 3-connection link .. 75
Table 53 – Informative PS NEXT values for links with maximum implementation at key frequencies ... 76
Table 54 – Informative ACR-N values for links with maximum implementation at key frequencies ... 77
Table 55 – Informative PS ACR-N values for links with maximum implementation at key frequencies ... 78
Table 56 – ACR-F for 2-connection or 3-connection link ... 79
Table 57 – Informative ACR-F values for links with maximum implementation at key frequencies ... 80
Table 58 – PS ACR-F for 2-connection or 3-connection link .. 81
Table 59 – Informative PS ACR-F values for links with maximum implementation at key frequencies ... 82
Table 60 – DC loop resistance for 2-connection or 3-connection link .. 82
Table 61 – Informative DC loop resistance for links with maximum implementation 83
Table 62 – Propagation delay for 2-connection or 3-connection link ... 84
Table 63 – Informative propagation delay values for links with maximum implementation at key frequencies ... 84
Table 64 – Delay skew for 2-connection or 3-connection link ... 85
Table 65 – Informative delay skew for links with maximum implementation 86
Table 66 – TCL for Class I and II screened permanent links .. 87
Table 67 – Informative TCL values for Class I and II screened permanent links at key frequencies ... 87
Table 68 – ELTCTL for Class I and II permanent links ... 88
Table 69 – Informative ELTCTL values for Class I and II permanent links at key frequencies 88
Table 70 – Coupling attenuation for a screened permanent link ... 89
Table 71 – Informative coupling attenuation values for screened permanent links at key frequencies ... 89
Table 72 – PS ANEXT for 2-connection or 3-connection link ... 90
Table 73 – Informative PS ANEXT values for links at key frequencies ... 91
Table 74 – PS ANEXT_avg for 2-connection or 3-connection link ... 91
Table 75 – Informative PS ANEXT_avg values for links at key frequencies 92
Table 76 – PS AACR-F for 2-connection or 3-connection link ... 92
Table 77 – Informative PS AACR-F values for links at key frequencies ... 93
Table 78 – PS AACR-F_avg for a 2-connection or 3-connection link ... 93
Table 79 – Informative PS AACR-F_avg values for links at key frequencies 94
Table 80 – Alien crosstalk and coupling attenuation for screened links ... 94
Table 81 – Insertion loss for link ... 95
Table 82 – Informative insertion loss values for link at key frequencies 95
Table 83 – DC loop resistance for link ... 95
Table 84 – Backbone link length equations .. 97
Table 85 – Basic requirements of balanced cables

Table 86 – Mechanical characteristics of balanced cables of Category 5, 6, 6A, 7 and 7A

Table 87 – Mechanical characteristics of balanced cables of Category BCT-B

Table 88 – Minimum transmission performance requirements BCT-B balanced pairs

Table 89 – Basic requirements of coaxial cables

Table 90 – Mechanical performance requirements for coaxial BCT cables

Table 91 – Minimum electrical performance requirements for cables of Category BCT-C

Table 92 – Cabled optical fibre attenuation (maximum), dB/km

Table 93 – Multimode optical fibre modal bandwidth

Table 94 – Environmental performance specifications for balanced cabling connecting hardware

Table 95 – Environmental performance specifications for coaxial cabling connecting hardware

Table 96 – Environmental performance specifications for optical fibre cabling connecting hardware

Table 97 – Mechanical characteristics of connecting hardware for use with balanced cabling

Table 98 – Matrix of backward compatible mated free and fixed connector (plug and jack) performance

Table 99 – Return loss

Table 100 – Informative return loss values for connector at key frequencies

Table 101 – Insertion loss

Table 102 – Informative insertion loss values for connector at key frequencies

Table 103 – Near-end crosstalk (NEXT)

Table 104 – Informative NEXT values for connector at key frequencies

Table 105 – Power sum near-end crosstalk (PS NEXT) (for information only)

Table 106 – Informative PS NEXT values for connector at key frequencies

Table 107 – Far-end crosstalk (FEXT)

Table 108 – Informative FEXT values for connector at key frequencies

Table 109 – Power sum far-end crosstalk (PS FEXT) (for information only)

Table 110 – Informative PS FEXT values for connector at key frequencies

Table 111 – Input to output resistance

Table 112 – Input to output resistance unbalance

Table 113 – DC current carrying capacity

Table 114 – Propagation delay

Table 115 – Delay skew

Table 116 – Transverse conversion loss (TCL)

Table 117 – Informative TCL values for connector at key frequencies

Table 118 – Transverse conversion transfer loss (TCTL)

Table 119 – Informative TCTL values for connector at key frequencies

Table 120 – Transfer impedance (screened connectors only)

Table 121 – Informative transfer impedance values (screened connectors only) at key frequencies
Table E.7 – Supported BCT applications using balanced cabling 154
Table E.8 – Supported BCT applications using coaxial cabling 155
Table E.9 – Supported applications and maximum channel lengths with cabled multimode optical fibres ... 155
Table E.10 – Supported applications and maximum channel lengths with cabled all-silica single-mode optical fibres .. 155
Table F.1 – Grandfathered OM1, OM2 and OS1 specifications 156
Table F.2 – Supported applications and maximum channel lengths with cabled all-silica multimode optical fibres .. 156
Table F.3 – Supported applications and maximum channel lengths with cabled all-silica singlemode optical fibres .. 156
Part 1: General requirements

FOREWORD

1) ISO (the International Organization for Standardization) and IEC (the International Electrotechnical Commission) form the specialized system for worldwide standardization. National bodies that are members of ISO or IEC participate in the development of International Standards through technical committees established by the respective organization to deal with particular fields of technical activity. ISO and IEC technical committees collaborate in fields of mutual interest. Other international organizations, governmental and non-governmental, in liaison with ISO and IEC, also take part in the work. In the field of information technology, ISO and IEC have established a joint technical committee, ISO/IEC JTC 1.

2) The formal decisions or agreements of IEC and ISO on technical matters express, as nearly as possible, an international consensus of opinion on the relevant subjects since each technical committee has representation from all interested IEC National Committees and ISO member bodies.

3) IEC, ISO and ISO/IEC publications have the form of recommendations for international use and are accepted by IEC National Committees and ISO member bodies in that sense. While all reasonable efforts are made to ensure that the technical content of IEC, ISO and ISO/IEC publications is accurate, IEC or ISO cannot be held responsible for the way in which they are used or for any misinterpretation by any end user.

4) In order to promote international uniformity, IEC National Committees and ISO member bodies undertake to apply IEC, ISO and ISO/IEC publications transparently to the maximum extent possible in their national and regional publications. Any divergence between any ISO, IEC or ISO/IEC publication and the corresponding national or regional publication should be clearly indicated in the latter.

5) ISO and IEC do not provide any attestation of conformity. Independent certification bodies provide conformity assessment services and, in some areas, access to IEC marks of conformity. ISO or IEC are not responsible for any services carried out by independent certification bodies.

6) All users should ensure that they have the latest edition of this publication.

7) No liability shall attach to IEC or ISO or its directors, employees, servants or agents including individual experts and members of their technical committees and IEC National Committees or ISO member bodies for any personal injury, property damage or other damage of any nature whatsoever, whether direct or indirect, or for costs (including legal fees) and expenses arising out of the publication of, use of, or reliance upon, this ISO/IEC publication or any other IEC, ISO or ISO/IEC publications.

8) Attention is drawn to the normative references cited in this publication. Use of the referenced publications is indispensable for the correct application of this publication.

9) Attention is drawn to the possibility that some of the elements of this ISO/IEC publication may be the subject of patent rights. ISO and IEC shall not be held responsible for identifying any or all such patent rights.

International Standard ISO/IEC 11801-1 was prepared by subcommittee 25: Interconnection of information technology equipment, of ISO/IEC joint technical committee 1: Information technology.

This edition includes the following significant technical changes with respect to the previous edition:

a) standard re-structured to contain those elements and requirements, that are common to generic cabling systems (in application fields such as offices and industrial premises), namely requirements for common elements of topology and transmission performance of channels, links and related components;

b) addition of balanced cabling channel and link Classes BCT-B, I and II;

c) addition of coaxial cabling channel and link Class BCT-C;

d) addition of balanced cabling component requirements for Category BCT-B, 8.1, and 8.2;
e) addition of coaxial cabling component requirements for Category BCT-C;
f) addition of cabled fibres of Category OS1a, and OM5;
g) removal of silica optical fibre cabling;
h) optical fibre cable OM1, OM2 and OS1 has been moved to an informative annex.

This International Standard has been approved by vote of the member bodies, and the voting results may be obtained from the address given on the second title page.

This document has been drafted in accordance with the ISO/IEC Directives, Part 2.

A list of all parts in the ISO/IEC 11801 series, published under the general title *Information technology – Generic cabling for customer premises*, can be found on the IEC website.
INTRODUCTION

This document specifies a multi-vendor cabling system which may be implemented with material from single or multiple sources, and is related to:

a) International Standards for cabling components developed by technical committees of the IEC, for example copper cables and connectors as well as optical fibre cables and connectors (see Clause 2 and bibliography);

b) standards for the testing of installed cabling (see Clause 2 and bibliography);

c) applications developed by technical committees of the IEC, by subcommittees of ISO/IEC JTC 1, by study groups of ITU-T, for example for LANs and ISDN, and by IEEE 802;

d) planning and installation guides and other standards which take into account the needs of specific applications for the configuration and the use of cabling systems on customer premises (e.g. ISO/IEC 14709 series, ISO/IEC 14763 series, ISO/IEC 30129, and ISO/IEC 18598).

Physical layer requirements for the applications listed in Annex E have been analysed to determine their compatibility with cabling classes specified in this document. These application requirements, together with statistics concerning premises-specific topologies and cabling models of the supported standards, have been used to develop the requirements for balanced, coaxial and optical fibre cabling.

As a result, generic cabling defined within this document:

1) specifies balanced cabling channel and link Classes A, B, C, D, E, E_A, F, F_A, I and II meeting both the requirements of standardized applications and to support the development and implementation of future applications;

2) specifies balanced cabling channel and link Class BCT-B to support the delivery of BCT applications;

3) specifies coaxial cabling channel and link Class BCT-C to support the delivery of BCT applications;

4) specifies optical fibre cabling meeting the requirements of standardized applications and exploiting component capabilities to ease the implementation of applications developed in the future;

5) invokes component requirements and specifies cabling implementations that ensure performance of links and of channels that meet or exceed the requirements for cabling classes.

Figure 1 shows the schematic and contextual relationships between the standards relating to information technology cabling produced by ISO/IEC JTC 1/SC 25, namely the ISO/IEC 11801 series of standards for generic cabling design, standards for the installation, operation and administration of generic cabling and for testing of installed generic cabling.
Figure 1 – Relationships between the generic cabling documents produced by ISO/IEC JTC 1/SC 25

This document refers to International Standards for components and test methods wherever appropriate International Standards are available.
1 Scope

This part of ISO/IEC 11801 specifies requirements that are common to the other parts of the ISO/IEC 11801 series. Cabling specified by this document supports a wide range of services including voice, data, and video that may also incorporate the supply of power.

This document specifies:

a) the fundamental structure and configuration of generic cabling requirements within the types of premises defined by the other parts of the ISO/IEC 11801 series,

b) channel transmission and environmental performance requirements,

c) link performance requirements,

d) backbone cabling reference implementations in support of the parts of the ISO/IEC 11801 series,

e) component performance requirements, referring to available International Standards for components and test methods where appropriate,

f) test procedures to verify conformance to the cabling transmission performance requirements of the ISO/IEC 11801 series.

NOTE This document does not contain specific conformance requirements. The cabling design documents supported by ISO/IEC 11801-1 incorporate the requirements of this document as part of their individual conformance requirements.

In addition, this document provides information regarding the applications supported by the cabling channels.

2 Normative references

The following documents are referred to in the text in such a way that some or all of their content constitutes requirements of this document. For dated references, only the edition cited applies. For undated references, the latest edition of the referenced document (including any amendments) applies.

IEC 60352-2, Solderless connections – Part 2: Crimped connections – General requirements, test methods and practical guidance

IEC 60352-3, Solderless connections – Part 3: Solderless accessible insulation displacement connections – General requirements, test methods and practical guidance

IEC 60352-4, Solderless connections – Part 4: Solderless non-accessible insulation displacement connections – General requirements, test methods and practical guidance

IEC 60352-5, Solderless connections – Part 5: Press-in connections – General requirements, test methods and practical guidance

IEC 60352-6, Solderless connections – Part 6: Insulation piercing connections – General requirements, test methods and practical guidance

IEC 60352-7, Solderless connections – Part 7: Spring clamp connections – General requirements, test methods and practical guidance

IEC 60352-8, Solderless connections – Part 8: Compression mount connections – General requirements, test methods and practical guidance
IEC 60512-4-1, Connectors for electronic equipment – Tests and measurements – Part 4-1: Voltage stress tests – Test 4a: Voltage proof

IEC 60512-4-2, Connectors for electronic equipment – Tests and measurements – Part 4-2: Voltage stress tests – Test 4b: Partial discharge

IEC 60512-6-2, Connectors for electronic equipment – Tests and measurements – Part 6-2: Dynamic stress tests – Test 6b: Bump

IEC 60512-6-4, Connectors for electronic equipment – Tests and measurements – Part 6-4: Dynamic stress tests – Test 6d: Vibration (sinusoidal)

IEC 60512-11-4, Connectors for electronic equipment – Tests and measurements – Part 11-4: Climatic tests – Test 11d: Rapid change of temperature

IEC 60512-11-7, Connectors for electronic equipment – Tests and measurements – Part 11-7: Climatic tests – Test 11g: Flowing mixed gas corrosion test

IEC 60512-11-9, Connectors for electronic equipment – Tests and measurements – Part 11-9: Climatic tests – Test 11i: Dry heat

IEC 60512-11-10, Connectors for electronic equipment – Tests and measurements – Part 11-10: Climatic tests – Test 11j: Cold

IEC 60512-11-12, Connectors for electronic equipment – Tests and measurements – Part 11-12: Climatic tests – Test 11m: Damp heat, cyclic

IEC 60512-16-4, Connectors for electronic equipment – Tests and measurements – Part 16-4: Mechanical tests on contacts and terminations – Test 16d: Tensile strength (crimped connections)

IEC 60512-17-4, Connectors for electronic equipment – Tests and measurements – Part 17-4: Cable clamping tests – Test 17d: Cable clamp resistance to cable torsion

IEC 60512-19-3, Electromechanical components for electronic equipment – Basic testing procedures and measuring methods – Part 19: Chemical resistance tests – Section 3: Test 19c – Fluid resistance

IEC 60512-23-3, Electromechanical components for electronic equipment – Basic testing procedures and measuring methods – Part 23-3: Test 23c: Shielding effectiveness of connectors and accessories

IEC 60512-99-001, Connectors for electronic equipment – Tests and measurements – Part 99-001: Test schedule for engaging and separating connectors under electrical load – Test 99a: Connectors used in twisted pair communication cabling with remote power

IEC 60529, Degrees of protection provided by enclosures (IP Code)

IEC 60603-7, Connectors for electronic equipment – Part 7: Detail specification for 8-way, unshielded, free and fixed connectors

IEC 60603-7-1, Connectors for electronic equipment – Part 7-1: Detail specification for 8-way, shielded, free and fixed connectors

IEC 60603-7-2, Connectors for electronic equipment – Part 7-2: Detail specification for 8-way, unshielded, free and fixed connectors, for data transmissions with frequencies up to 100 MHz

IEC 60603-7-3, Connectors for electronic equipment – Part 7-3: Detail specification for 8-way, shielded, free and fixed connectors, for data transmission with frequencies up to 100 MHz
IEC 60603-7-4, Connectors for electronic equipment – Part 7-4: Detail specification for 8-way, unshielded, free and fixed connectors, for data transmissions with frequencies up to 250 MHz

IEC 60603-7-5, Connectors for electronic equipment – Part 7-5: Detail specification for 8-way, shielded, free and fixed connectors, for data transmissions with frequencies up to 250 MHz

IEC 60603-7-7, Connectors for electronic equipment – Part 7-7: Detail specification for 8-way, shielded, free and fixed connectors for data transmission with frequencies up to 600 MHz

IEC 60603-7-41, Connectors for electronic equipment – Part 7-41: Detail specification for 8-way, unshielded, free and fixed connectors, for data transmissions with frequencies up to 500 MHz

IEC 60603-7-51, Connectors for electronic equipment – Part 7-51: Detail specification for 8-way, shielded, free and fixed connectors, for data transmissions with frequencies up to 500 MHz

IEC 60603-7-71, Connectors for electronic equipment – Part 7-71: Detail specification for 8-way, shielded, free and fixed connectors, for data transmission with frequencies up to 1 000 MHz

IEC 60603-7-81, Connectors for electronic equipment – Part 7-81: Detail specification for 8-way, shielded, free and fixed connectors, for data transmissions with frequencies up to 2 000 MHz

IEC 60603-7-82, Connectors for electronic equipment – Part 7-82: Detail specification for 8-way, 12 contacts, shielded, free and fixed connectors, for data transmission with frequencies up to 2 000 MHz

IEC 60794-1-21, Optical fibre cables – Part 1-21: Generic specification – Basic optical cable test procedures – Mechanical test methods

IEC 60794-2, Optical fibre cables – Part 2: Indoor cables – Sectional specification

IEC 60794-2-51, Optical fibre cables – Part 2-51: Indoor cables – Detail specification for simplex and duplex cables for use in cords for controlled environment

IEC 60794-3, Optical fibre cables – Part 3: Outdoor cables – Sectional specification

IEC 60794-5, Optical fibre cables – Part 5: Sectional specification – Microduct cabling for installation by blowing

IEC 60966-2-4, Radio frequency and coaxial cable assemblies – Part 2-4: Detail specification for cable assemblies for radio and TV receivers – Frequency range 0 MHz to 3000 MHz, IEC 61169-2 connectors

IEC 60966-2-5, Radio frequency and coaxial cable assemblies – Part 2-5: Detail specification for cable assemblies for radio and TV receivers – Frequency range 0 MHz to 1000 MHz, IEC 61169-2 connectors
IEC 60966-2-6, Radio frequency and coaxial cable assemblies – Part 2-6: Detail specification for cable assemblies for radio and TV receivers – Frequency range 0 MHz to 3000 MHz, IEC 61169-24 connectors

IEC 61076-2-109, Connectors for electronic equipment – Product requirements – Part 2-109: Circular connectors – Detail specification for connectors with M 12 × 1 screw-locking, for data transmission frequencies up to 500 MHz

IEC 61076-3-104, Connectors for electrical and electronic equipment – Product requirements – Part 3-104: Detail specification for 8-way, shielded free and fixed connectors for data transmissions with frequencies up to 2000 MHz

IEC 61076-3-106, Connectors for electronic equipment – Product requirements – Part 3-106: Rectangular connectors – Detail specification for protective housings for use with 8-way shielded and unshielded connectors for industrial environments incorporating the IEC 60603-7 series interface

IEC 61076-3-110, Connectors for electronic equipment – Product requirements – Part 3-110: Detail specification for shielded, free and fixed connectors for data transmission with frequencies up to 3000 MHz

IEC 61156 (all parts), Multicore and symmetrical pair/quad cables for digital communications

IEC 61156-1, Multicore and symmetrical pair/quad cables for digital communications – Part 1: Generic specification

IEC 61156-2, Multicore and symmetrical pair/quad cables for digital communications – Part 2: Symmetrical pair/quad cables with transmission characteristics up to 100 MHz – Horizontal floor wiring – Sectional specification

IEC 61156-3, Multicore and symmetrical pair/quad cables for digital communications – Part 3: Work area cable – Sectional specification

IEC 61156-4, Multicore and symmetrical pair/quad cables for digital communications – Part 4: Riser cables – Sectional specification

IEC 61156-5:2009, Multicore and symmetrical pair/quad cables for digital communications – Part 5: Symmetrical pair/quad cables with transmission characteristics up to 1000 MHz – Horizontal floor wiring – Sectional specification

IEC 61156-5-1, Multicore and symmetrical pair/quad cables for digital communications – Part 5-1: Symmetrical pair/quad cables with transmission characteristics up to 1000 MHz – Horizontal floor wiring – Blank detail specification

IEC 61156-6, Multicore and symmetrical pair/quad cables for digital communications – Part 6: Symmetrical pair/quad cables with transmission characteristics up to 1000 MHz – Work area wiring – Sectional specification

IEC 61156-6-1, Multicore and symmetrical pair/quad cables for digital communications – Part 6-1: Symmetrical pair/quad cables with transmission characteristics up to 1000 MHz – Work area wiring – Blank detail specification

IEC 61156-7, Multicore and symmetrical pair/quad cables for digital communications – Part 7: Symmetrical pair cables with transmission characteristics up to 1200 MHz – Sectional specification for digital and analog communication cables

IEC 61156-9:2016, Multicore and symmetrical pair/quad cables for digital communications – Part 9: Cables for channels with transmission characteristics up to 2 GHz – Sectional specification
IEC 61156-10, Multicore and symmetrical pair/quad cables for digital communications – Part 10: Cables for cords with transmission characteristics up to 2 GHz – Sectional specification

IEC 61196-1, Coaxial communication cables – Part 1: Generic specification – General, definitions and requirements

IEC 61196-6, Coaxial communication cables – Part 6: Sectional specification for CATV drop cables

IEC 61196-7, Coaxial communication cables – Part 7: Sectional specification for cables for BCT cabling in accordance with ISO/IEC 15018 – Indoor drop cables for systems operating at 5 MHz – 3000 MHz

IEC 61300-2-1, Fibre optic interconnecting devices and passive components – Basic test and measurement procedures – Part 2-1: Tests – Vibration (sinusoidal)

IEC 61300-2-4, Fibre optic interconnecting devices and passive components – Basic test and measurement procedures – Part 2-4: Tests – Fibre/cable retention

IEC 61300-2-5, Fibre optic interconnecting devices and passive components – Basic test and measurement procedures – Part 2-5: Tests – Torsion

IEC 61300-2-9, Fibre optic interconnecting devices and passive components – Basic test and measurement procedures – Part 2-9: Tests – Shock

IEC 61300-2-18, Fibre optic interconnecting devices and passive components – Basic test and measurement procedures – Part 2-18: Tests – Dry heat – High temperature endurance

IEC 61300-2-22, Fibre optic interconnecting devices and passive components – Basic test and measurement procedures – Part 2-22: Tests – Change of temperature

IEC 61300-2-34, Fibre optic interconnecting devices and passive components – Basic test and measurement procedures – Part 2-34: Tests – Resistance to solvents and contaminating fluids of interconnecting components and closures

IEC 61300-2-44, Fibre optic interconnecting devices and passive components – Basic test and measurement procedures – Part 2-44: Tests – Flexing of the strain relief of fibre optic devices

IEC 61300-2-46, Fibre optic interconnecting devices and passive components – Basic test and measurement procedures – Part 2-46: Tests – Damp heat, cyclic

IEC 61753-1, Fibre optic interconnecting devices and passive components – Performance standard – Part 1: General and guidance for performance standards

IEC 61753-021-2, Fibre optic interconnecting devices and passive components – Performance standard – Part 021-2: Grade C/3 single-mode fibre optic connectors for category C – Controlled environment

IEC 61753-022-2, Fibre optic interconnecting devices and passive components – Performance standard – Part 022-2: Fibre optic connectors terminated on multimode fibre for category C – Controlled environment

IEC 61754 (all parts), Fibre optic interconnecting devices and passive components – Fibre optic connector interfaces
3.1 administration

methodology defining the documentation requirements of a cabling system and its containment, the labelling of functional elements and the process by which moves, additions and changes are recorded

3.1.2 alien crosstalk

signal coupling from a disturbing pair of a channel to a disturbed pair of another channel

Note 1 to entry: This also applies to the signal coupling from a disturbing pair within a link or component, used to create a channel, to a disturbed pair within a link or component, used to create another channel.

Note 2 to entry: This is also known as exogenous crosstalk.

3.1.3 alien far-end crosstalk loss

signal coupling between a disturbing pair of a channel and a disturbed pair of another channel, measured at the far-end

Note 1 to entry: This also applies to the measurement of the signal coupling between a disturbing pair within a link or component, used to create a channel, and a disturbed pair within a link or component, used to create another channel.

Note 2 to entry: This is also known as exogenous far-end crosstalk loss.

3.1.4 alien near-end crosstalk loss

signal coupling between a disturbing pair of a channel and a disturbed pair of another channel, measured at the near-end

IEC 61754-20-100, Fibre optic interconnecting devices and passive components – Part 20-100: Interface standard for LC connectors with protective housings related to IEC 61076-3-106

IEC 61935-1, Specification for the testing of balanced and coaxial information technology cabling – Part 1: Installed balanced cabling as specified in ISO/IEC 11801 and related standards

IEC 61935-2, Specification for the testing of balanced and coaxial information technology cabling – Part 2: Cords as specified in ISO/IEC 11801 and related standards

IEC 62012-1, Multicore and symmetrical pair/quad cables for digital communications to be used in harsh environments – Part 1: Generic specification

IEC 62664-1-1, Fibre optic interconnecting devices and passive components – Fibre optic connector product specifications – Part 1-1: LC-PC duplex multimode connectors terminated on IEC 60793-2-10 category A1a fibre

ISO 4892-1, Plastics – Methods of exposure to laboratory light sources – Part 1: General guidance

ISO 4892-2, Plastics – Methods of exposure to laboratory light sources – Part 2: Xenon-arc lamps

ISO/IEC 14763-2, Information technology – Implementation and operation of customer premises cabling – Part 2: Planning and installation