Information technology — Computer graphics and image processing — Image Processing and Interchange (IPI) — Functional specification —

Part 2:
Programmer's imaging kernel system application program interface

Technologies de l'information — Infographie et traitement de l'image — Traitement de l'image et échange (IPI) — Spécification fonctionnelle —

Partie 2: Interface de programme d'application PIKS
Contents

<table>
<thead>
<tr>
<th>Section</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>Foreword</td>
<td>viii</td>
</tr>
<tr>
<td>1 Scope</td>
<td>1</td>
</tr>
<tr>
<td>2 Normative references</td>
<td>3</td>
</tr>
<tr>
<td>3 Symbols and abbreviations</td>
<td>5</td>
</tr>
<tr>
<td>4 Programmer's Imaging Kernel System specification</td>
<td>11</td>
</tr>
<tr>
<td>4.1 PIKS imaging model</td>
<td>11</td>
</tr>
<tr>
<td>4.1.1 Image data objects</td>
<td>12</td>
</tr>
<tr>
<td>4.1.2 Non-image data objects</td>
<td>14</td>
</tr>
<tr>
<td>4.1.3 Data object creation</td>
<td>15</td>
</tr>
<tr>
<td>4.2 PIKS operators, tools, data object repository utilities, and system mechanisms</td>
<td>15</td>
</tr>
<tr>
<td>4.2.1 Operators</td>
<td>15</td>
</tr>
<tr>
<td>4.2.2 Tools</td>
<td>16</td>
</tr>
<tr>
<td>4.2.3 Data object repository</td>
<td>16</td>
</tr>
<tr>
<td>4.2.3.1 Impulse response function arrays</td>
<td>17</td>
</tr>
<tr>
<td>4.2.3.2 Dither arrays</td>
<td>17</td>
</tr>
<tr>
<td>4.2.3.3 Colour conversion matrices</td>
<td>17</td>
</tr>
<tr>
<td>4.2.4 Utilities</td>
<td>18</td>
</tr>
<tr>
<td>4.2.5 System mechanisms</td>
<td>18</td>
</tr>
</tbody>
</table>
4.3 PIKS operator model

- **4.3.1 Non-image to non-image operators**
- **4.3.2 Image to non-image operators**
- **4.3.3 Image to image operators**
- **4.3.4 Neighbourhood operators**
- **4.3.5 Operator index assignment**

4.4 PIKS system mechanisms

- **4.4.1 Data object allocation**
- **4.4.2 Match point control**
- **4.4.3 ROI control**
- **4.4.4 ROI data object creation and manipulation**
- **4.4.5 Asynchronous control**
- **4.4.6 Element chaining**
 - **4.4.6.1 Chain construction**
 - **4.4.6.2 Chain execution**
- **4.4.7 Virtual register control**
 - **4.4.7.1 Virtual registers for storage of PIKS temporary variables**
 - **4.4.7.2 Virtual registers for asynchronous control**
 - **4.4.7.3 Virtual registers for chain iteration and conditional execution**
 - **4.4.7.4 Virtual registers for auditing asynchronous state**
- **4.4.8 Global element control**
- **4.4.9 Composite image management**
 - **4.4.9.1 Composite image identifier arrays**
 - **4.4.9.2 Composite image identifier lists**
 - **4.4.9.3 Composite image identifier records**
- **4.4.10 PIKS error handling**
- **4.4.11 PIKS operational states**

4.5 PIKS utilities

- **4.5.1 Inquiry**
- **4.5.2 Import and export**
 - **4.5.2.1 Data object import and export utilities**
 - **4.5.2.2 PIKS to application data type conversion**

© ISO/IEC

ISO/IEC 12087-2:1994(E)
Contents
<table>
<thead>
<tr>
<th>Section</th>
<th>Title</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>5</td>
<td>PIKS conformance and extension methods</td>
<td>61</td>
</tr>
<tr>
<td>5.1</td>
<td>Foundation profile</td>
<td>61</td>
</tr>
<tr>
<td>5.2</td>
<td>Application profiles</td>
<td>61</td>
</tr>
<tr>
<td>5.3</td>
<td>Full profile</td>
<td>61</td>
</tr>
<tr>
<td>5.4</td>
<td>IIF capability profiles</td>
<td>61</td>
</tr>
<tr>
<td>5.5</td>
<td>PIKS profile definitions</td>
<td>61</td>
</tr>
<tr>
<td>5.6</td>
<td>Extension methods</td>
<td>74</td>
</tr>
<tr>
<td>6</td>
<td>PIKS element specification template</td>
<td>75</td>
</tr>
<tr>
<td>7</td>
<td>PIKS element specifications</td>
<td>83</td>
</tr>
</tbody>
</table>
Annexes:

A Definitions of mathematical functions
 A.1 Conventional mathematical symbols
 A.2 Operational symbols
 A.3 Mathematical functions

B PIKS element support - source image structure

C PIKS element support - destination image structure

D PIKS element support - source and destination image data type

E PIKS operator support - operator order

F PIKS element functionality

G PIKS data object repository
 G.1 Impulse response function arrays
 G.2 Dither arrays
 G.3 Colour conversion matrices

H PIKS image resampling

J PIKS error codes

K Bibliography of image processing books

L Alphabetical listings of PIKS elements by profile
 L.1 Alphabetical listing of PIKS elements in the Foundation profile
 L.2 Alphabetical listing of PIKS elements in the Technical profile
 L.3 Alphabetical listing of PIKS elements in the Scientific profile
 L.4 Alphabetical listing of PIKS elements in the Full profile
List of figures

1. PIKS imaging model
2. PIKS operator model: non-image to non-image operators
3. PIKS operator model: image to non-image operators
4. PIKS operator model: image to image operators
5. Operator index assignment
6. Example of match point translation for image subtraction
7. Examples of ROI operation
8. Example of the relationship between a ROI and an image
9. Examples of PIKS element chains
10. PIKS operational state diagram
11. PIKS interface to the IIF gateway and an application
12. PIKS to application interface
List of tables

<table>
<thead>
<tr>
<th>Table</th>
<th>Description</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>PIKS image objects</td>
<td>13</td>
</tr>
<tr>
<td>2</td>
<td>PIKS operators listed by functional class</td>
<td>19</td>
</tr>
<tr>
<td>3</td>
<td>PIKS tools listed by functional class</td>
<td>24</td>
</tr>
<tr>
<td>4</td>
<td>PIKS utilities listed by functional class</td>
<td>26</td>
</tr>
<tr>
<td>5</td>
<td>PIKS system mechanisms listed by functional class</td>
<td>28</td>
</tr>
<tr>
<td>6</td>
<td>PIKS data type codes</td>
<td>60</td>
</tr>
<tr>
<td>7</td>
<td>External physical data types supported by PIKS</td>
<td>60</td>
</tr>
<tr>
<td>8</td>
<td>Data types of PIKS non-image data objects supported in the Foundation profile</td>
<td>62</td>
</tr>
<tr>
<td>9</td>
<td>PIKS conformance profiles</td>
<td>63</td>
</tr>
<tr>
<td>10</td>
<td>Number of operators, tools, utilities, mechanisms, and total elements in each profile</td>
<td>64</td>
</tr>
<tr>
<td>11</td>
<td>PIKS elements in each profile</td>
<td>65</td>
</tr>
</tbody>
</table>
Foreword

ISO (the International Organization for Standardization) and IEC (the International Electrotechnical Commission) form the specialized system for worldwide standardization. National bodies that are members of ISO or IEC participate in the development of International Standards through technical committees established by the respective organization to deal with particular fields of technical activity. ISO and IEC technical committees collaborate in fields of mutual interest. Other international organizations, governmental and non-governmental, in liaison with ISO and IEC, also take part in the work.

In the field of information technology, ISO and IEC have established a joint technical committee, ISO/IEC JTC 1. Draft International Standards adopted by the joint technical committee are circulated to national bodies for voting. Publication as an International Standard requires approval by at least 75% of the national bodies casting a vote.

International Standard ISO/IEC 12087-2 was prepared by Joint Technical Committee ISO/IEC JTC 1, Information technology, Subcommittee SC 24, Computer graphics and image processing.

ISO/IEC 12087 consists of the following parts, under the general title Information technology — Computer graphics and image processing — Image processing and interchange (IPI) — Functional specification:

- Part 1: Common architecture for imaging
- Part 2: Programmer’s imaging kernel system application program interface
- Part 3: Image Interchange Facility

Annexes A, G, H and J form an integral part of this part of ISO/IEC 12087. Annexes B, C, D, E, F, K and L are for information only.
1 Scope

This part of ISO/IEC 12087 establishes the specification of the application program interface (API), called the Programmer’s Imaging Kernel System (PIKS). ISO/IEC 12087-1 establishes the conceptual and architectural definitions of the Common Architecture for Imaging (CAI). ISO/IEC 12087-3 establishes the specification of the Image Interchange Facility (IIF).

PIKS is intended to provide a rich set of both low-level and high-level services on image and image-derived data objects. These services can be used as building blocks for a broad range of common imaging applications.

A conscious effort has been made by the developers of PIKS to create a standard that does not favor any particular computing system. Implementations of PIKS should be possible on computing systems ranging in architecture from general purpose computers to specialised hardware accelerators, ranging in size from personal computers to mainframe supercomputers, and ranging in connectivity from stand-alone machines to distributed computing networks.

Where applicable, PIKS relies on other APIs and data format standards to provide capabilities that are not unique to imaging. The following lists contain a summary of technological capabilities provided by PIKS and not provided by PIKS. However, it should be noted that PIKS functionality may be useful as a pre-processor or co-processor for many of the technologies in the “Not provided by PIKS” list.
Scope

Provided by PIKS

- image analysis
- image classification (basic)
- image enhancement
- image interchange between PIKS and an application
- image interchange between PIKS and the IIF
- image manipulation primitives
- image processing data object generation tools (e.g., image filter functions)
- image restoration
- image visualization (basic)
- standard colour models

Not provided by PIKS

- audio
- computer graphics
- device control
- image acquisition
- image communication
- image compression and decompression
- image display
- image transport between applications
- image understanding
- multimedia
- pattern recognition
- specific implementations
- video
- window systems

NOTE – The Image Interchange Facility of ISO/IEC 12087-3 specifies image compression and decompression functionality and image transport between applications and between an application and PIKS.
2 Normative references

The following standards contain provisions which, through references in this text, constitute provisions of this part of the ISO/IEC 12087. At the time of publication, the editions indicated were valid. All standards are subject to revision, and parties to agreements based on this part of ISO/IEC 12087 are encouraged to investigate the possibility of applying the most recent standards indicated below. Members of IEC and ISO maintain registers of currently valid International Standards.

1) to be published.