This is a preview - click here to buy the full publication

INTERNATIONAL STANDARD

14517

First edition 1996-12-15

Corrected and reprinted 1998-07-15

Information technology — 130 mm optical disk cartridges for information interchange — Capacity: 2,6 Gbytes per cartridge

Technologies de l'information — Cartouches de disque optique de 130 mm pour l'échange d'information — Capacité: 2,6 Gbytes par cartouche

Contents

	Page
Section 1 - General	1
1 Scope	1
2 Conformance	2
2.1 Optical Disk Cartridge (ODC)	2
2.2 Generating system	2
2.3 Receiving system	2
2.4 Compatibility statement	2
3 Normative reference	2
4 Definitions	2
4.1 band	2
4.2 case	2
4.3 clamping zone	2
4.4 control track	2
4.5 Cyclic Redundancy Check (CRC)	2
4.6 defect management	2
4.7 direct overwrite	2
4.8 disk reference plane	2
4.9 entrance surface	2
4.10 Error Correction Code (ECC)	2
4.11 format	2
4.12 hub	2
4.13 interleaving	2
4.14 Kerr rotation	3
4.15 land and groove	3
4.16 logical track	3
4.17 mark	3
4.18 mark edge	3
4.19 mark edge recording	3
4.20 optical disk	3
4.21 optical disk cartridge (ODC)	3
4.22 physical track	3
4.23 polarization	3
4.24 pre-recorded mark	3

©ISO/IEC 1996

All rights reserved. Unless otherwise specified, no part of this publication may be reproduced or utilized in any form or by any means, electronic or mechanical, including photocopying and microfilm, without permission in writing from the publisher.

ISO/IEC Copyright Office • Case Postale 56 • CH-1211 Genève 20 • Switzerland

Printed in Switzerland

4.25 read power	3
4.26 recording layer	3
4.27 Reed-Solomon code	3
4.28 space	3
4.29 spindle	3
4.30 substrate	3
4.31 track pitch	3
4.32 write-inhibit hole	3
4.33 write-once functionality	3
4.34 zone	3
5 Conventions and notations	Δ
5.1 Representation of numbers	4
5.2 Names	4
6 List of acronyms	4
7 General description of the optical disk cartridge	5
8 General requirements	5
8.1 Environments	5
8.1.1 Test environment	5
8.1.2 Operating environment	5
8.1.3 Storage environment	6
8.1.4 Transportation	6
8.2 Temperature shock	6
8.3 Safety requirements	6
8.4 Flammability	6
9 Reference Drive	6
9.1 Optical system	6
9.2 Optical beam	8
9.3 Read channels	8
9.4 Tracking	8
9.5 Rotation of the disk	8
Section 2 - Mechanical and physical characteristics	9
10 Dimensional and physical characteristics of the case	9
10.1 General description of the case	9
10.2 Relationship of Sides A and B	9
10.3 Reference axes and case reference planes	9
10.4 Case drawings	9
10.5 Dimensions of the case	9
10.5.1 Overall dimensions	9
10.5.2 Location hole	10
10.5.3 Alignment hole	10
10.5.4 Surfaces on Reference Planes P	11
10.5.5 Insertion slots and detent features	12
10.5.6 Gripper slots	12
10.5.7 Write-inhibit holes	13
10.5.8 Media sensor holes	13
10.5.9 Head and motor window	14
10.5.10 Shutter	14
10.5.11 Slot for shutter opener	15

10.5.12 Shutter sensor notch	15
10.5.13 User label areas	16
10.6 Mechanical characteristics	16
10.6.1 Materials	16
10.6.2 Mass	16
10.6.3 Edge distortion	16
10.6.4 Compliance	16
10.6.5 Shutter opening force	16
10.7 Drop test	16
11 Dimensional, mechanical and physical characteristics of the disk	17
11.1 General description of the disk	17
11.2 Reference axis and plane of the disk	17
11.3 Dimensions of the disk	17
11.3.1 Hub dimension	17
11.4 Mechanical characteristics	18
11.4.1 Material	18
11.4.2 Mass	18
11.4.3 Moment of inertia	18
11.4.4 Imbalance	18
11.4.5 Axial deflection	19
11.4.6 Axial acceleration	19
11.4.7 Radial runout	19
11.4.8 Radial acceleration	19
11.4.9 Tilt	20
11.5 Optical characteristics	20
11.5.1 Index of refraction 11.5.2 Thickness	20
	20 20
11.5.3 Birefringence 11.5.4 Vertical Birefringence	20
11.5.5 Reflectance	20
	20
12 Interface between cartridge and drive	21
12.1 Clamping method	21
12.2 Clamping force	21
12.3 Capture cylinder	21
12.4 Disk position in the operating condition	21
Section 3 - Format of information	36
13 Track geometry	36
13.1 Track shape	36
13.2 Direction of track spiral	36
13.3 Track pitch	36
13.4 Logical track number	36
13.5 Physical track number	36
14 Track format	36
14.1 Physical track layout	36
14.2 Logical track layout	37
14.3 Radial alignment	37
14.4 Sector number	37
15 Sector format	37
15.1 Sector layout	37

15.2 Sector Mark	38
15.3 VFO fields	39
15.4 Address Mark (AM)	40
15.5 ID fields	40
15.6 Postamble (PA)	41
15.7 Gap	41
15.8 Flag	41
15.9 Auto Laser Power Control (ALPC)	42
15.10 Sync	42
15.11 Data field	42
15.11.1 User data bytes	42
15.11.2 CRC and ECC bytes	42
15.11.3 Bytes for the Sector Written Flag (SWF)	43
15.11.4 Bytes following the SWF in the Data field of the 512-byte sector format	43
15.11.5 Resync bytes	43
15.12 Buffer field	43
16 Recording code	43
17 Formatted Zone	44
17.1 General description of the Formatted Zone	44
17.1 General description of the Formatted Zone 17.2 Division of the Formatted Zone	44
17.2.1 Lead-in Zone	46
17.2.1 Lead-in Zone 17.2.2 Manufacturer Zones	46
17.2.3 User Zone	47
17.2.4 Reflective Zone	47
17.2.5 Control Track Zones	47
17.3 Control Track PEP Zone	47
17.3.1 Recording in the PEP Zone	47
17.3.2 Format of the tracks of the PEP Zone	48
17.4 Control Track SFP Zones	52
17.4.1 Duplicate of the PEP information	52
17.4.2 Media information	53
17.4.3 System Information	55
18 Layout of the User Zone	57
18.1 General description of the User Zone	57
18.2 Divisions of the User Zone	57
18.3 User Area	57
18.4 Defect Management Areas (DMAs)	60
18.5 Disk Definition Structure (DDS)	60
18.6 Rewritable Zone	62
18.6.1 Location	63
18.6.2 Partitioning	63
18.7 Embossed Zone	63
18.7.1 Location	63
18.7.2 Partitioning	63
18.7.3 Parity sectors	63
18.8 Write Once Zone	64
18.8.1 Location	64
18.8.2 Partitioning	64
19 Defect Management in the Rewritable and Write Once Zones	64

19.1 Initialization of the disk	64
19.2 Certification	64
19.2.1 Slipping Algorithm	64
19.2.2 Linear Replacement Algorithm	65
19.3 Disks not certified	65
19.4 Write procedure	65
19.5 Primary Defect List (PDL)	65
19.6 Secondary Defect List (SDL)	66
Section 4 - Characteristics of embossed information	67
20 Method of testing	67
20.1 Environment	67
20.2 Use of the Reference Drive	67
20.2.1 Optics and mechanics	67
20.2.2 Read power	68
20.2.3 Read channels	68
20.2.4 Tracking	68
20.3 Definition of signals	68
21 Signal from grooves	70
21.1 Cross-track signal	70
21.2 Cross Track Minimum Signal	70
21.3 Push-pull signal	71
21.4 Divided push-pull signal	71
21.5 Phase depth	72
21.6 Track location	72
22 Signals from Headers	72
22.1 Sector Mark Signals	72
22.2 VFO signals	72
22.3 Address Mark, ID and PA signals	72
22.4 Timing jitter	73
**	5 73
23 Signals from embossed Recording fields	73
23.1 Signal amplitude	73
23.2 Modulation method offset	73
23.4 P. A. F.	74
23.4 Byte Errors	74
24 Signals from Control Track PEP marks	74
Section 5 - Characteristics of the recording layer	75
25 Method of testing	75
25.1 Environment	75
25.2 Reference Drive	75
25.2.1 Optics and mechanics	75
25.2.2 Read power	75
25.2.3 Read Channel	75
25.2.4 Tracking	75
25.2.5 Signal detection for testing purposes	75
25.3 Write conditions	75
25.3.1 Write pulse and power	75
25.3.2 Write magnetic field	76

25.3.3 Pulse power determination	76
25.3.4 Media power sensitivity	76
25.4 Erase conditions	77
25.4.1 Erase power	77
25.4.2 Erase magnetic field	77
25.5 Definition of signals	77
26 Magneto-optical characteristics	77
26.1 Figure of merit for magneto-optical signal	77
26.2 Imbalance of magneto-optical signal	78
27 Write characteristics	78
27.1 Resolution	78
27.2 Narrow-band signal-to-noise ratio	79
27.3 Cross-talk ratio	79
27.3.1 Rewritable track test method	79
27.3.2 Embossed track test method	80
27.4 Timing Jitter	80
27.5 Media thermal interaction	80
28 Erase power determination	81
Section 6 - Characteristics of user data	82
29 Method of testing	82
29.1 Environment	82
29.2 Reference Drive	82
29.2.1 Optics and mechanics	82
29.2.2 Read power	82
29.2.3 Read amplifiers	82
29.2.4 Mark Quality	82
29.2.5 Channel bit clock	83
29.2.6 Binary-to-digital converters	83
29.2.7 Error correction	83
29.2.8 Tracking	83
30 Minimum quality of a sector	83
30.1 Headers	83
30.1.1 Sector Mark	83
30.1.2 ID fields	83
30.2 User-written data	83
30.2.1 Recording field	83
30.2.2 Byte errors	83
30.2.3 Modulation method offset	84
30.2.4 Timing jitter	84
31 Data interchange requirements	84
31.1 Tracking	84
31.2 User-written data	84
31.3 Embossed data	84
31.4 Quality of disk	84

Annexes

A - Air cleanliness class 100 000	85
B - Edge distortion test	86
C - Compliance test	88
D - Test method for measuring the adsorbent force of the hub	90
E - CRC for ID fields	92
F - Interleave, CRC, ECC, Resync for the data field	93
G - Determination of Resync pattern	99
H - Read Channel for measuring NBSNR and jitter	104
${f J}$ - Timing jitter measuring procedure	106
K - Definition of write pulse shape	108
L - Measurement of figure of merit	110
M - Implementation Independent Mark Quality Determination (IIMQD) for the interchange of recorded media	111
N - Requirements for interchange	113
P - Measurement implementation for Cross-track signal	115
Q - Office environment	116
R - Derivation of the operating climatic environment	117
S - Transportation	122
T - Sector retirement guidelines	123
U - Track deviation measurement	124
V - Values to be implemented in existing and future standards	128
W - Measurement of the vertical birefringence of the substrate	129
X - Guidelines for the use of Type WO and WO-DOW ODCs	131
Y - Laser power calibration for evaluation of media power sensitivity	132

Foreword

ISO (the International Organization for Standardization) and IEC (the International Electrotechnical Commission) form the specialized system for worldwide standardization. National bodies that are members of ISO or IEC participate in the development of International Standards through technical committees established by the respective organization to deal with particular fields of technical activity. ISO and IEC technical committees collaborate in fields of mutual interest. Other international organizations, governmental and non-governmental, in liaison with ISO and IEC, also take part in the work.

In the field of information technology, ISO and IEC have established a joint technical committee, ISO/IEC JTC 1. Draft International Standards adopted by the joint technical committee are circulated to national bodies for voting. Publication as an International Standard requires approval by at least 75 % of the national bodies casting a vote.

International Standard ISO/IEC 14517 was prepared by Joint Technical Committee ISO/IEC JTC 1, *Information technology*, Subcommittee SC 23, *Optical disk cartridges for information interchange*.

Annexes A to P form an integral part of this International Standard. Annexes Q to Y are for information only.

Information technology — 130 mm optical disk cartridges for information interchange — Capacity: 2,6 Gbytes per cartridge

Section 1 - General

1 Scope

This International Standard defines a series of related 130 mm optical disk cartridges (ODCs) by using a number of Type designations.

A disk has two sides, called Side A and Side B. Each side can have a nominal capacity of 1,3 Gbytes.

Type R/W provides for data to be written, read and erased many times over the recording surface of the corresponding disk side, using thermo-magnetic and magneto-optical effects.

Type P-ROM provides for a part of the disk surface to be pre-recorded and reproduced by stamping or other means. This part of the disk is read without recourse to the magneto-optical effect. All parts which are not pre-recorded provide for data to meet the requirements of Type R/W.

Type O-ROM provides for the whole of the disk surface to be pre-recorded and reproduced by stamping or other means. The corresponding disk sides are read without recourse to the magneto-optical effect.

Type DOW provides for data to be written and read many times over the recording surface of the corresponding disk side, using the direct overwrite thermo-magnetic and magneto-optical effects requiring a single external magnetic field.

Type P-DOW provides for a part of the disk surface to be pre-recorded and reproduced by stamping or other means. This part of the disk is read without recourse to the magneto-optical effect. All parts which are not pre-recorded provide for data to meet the requirements of Type DOW.

Type WO provides write once, read multiple functionality using the thermo-magnetic and magneto-optical effects.

Type WO-DOW provides write once, read multiple functionality using the direct overwrite thermo-magnetic and magneto-optical effects.

In addition, for each Type, this International Standard provides for cartridges with a sector size of 512 bytes and cartridges with a sector size of 1 024 bytes. All sectors of a disk are the same size.

This International Standard specifies

- the conditions for conformance testing and the Reference Drive;
- the environments in which the cartridges are to be operated and stored;
- the mechanical, physical and dimensional characteristics of the cartridge, so as to provide mechanical interchangeability between data processing systems;
- the format of the information on the disk, both embossed and user-written, including the physical disposition of the tracks and sectors, the error correction codes, the modulation methods used;
- the characteristics of the embossed information on the disk;
- the magneto-optical characteristics of the disk, enabling processing systems to writedata onto the disk;
- the minimum quality of user-written data on the disk, enabling data processing systems to read data from the disk.

This International Standard provides for interchange between optical disk drives. Together with a Standard for volume and file structure it provides for full data interchange between data processing systems.

2 Conformance

- **2.1 Optical Disk Cartridge:** A claim of conformance shall specify the Type of the ODC. It shall be in conformance with this International Standard if it meets all mandatory requirements specified therein for that Type.
- **2.2 Generating system:** A claim of conformance with this International Standard shall specify which of Types R/W, DOW, P-ROM, P-DOW, O-ROM, WO and WO-DOW is(are) supported. A system generating an ODC for interchange shall be in conformance with this International Standard if it meets the mandatory requirements of this Standard for the Type(s) supported.
- **2.3 Receiving system:** A claim of conformance with this International Standard shall specify which Type(s) is(are) supported.

A system receiving an ODC for interchange shall be in conformance with this International Standard if it is able to process any recording made on the cartridge according to 2.1 on the Type(s) specified.

2.4 Compatibility statement: A claim of conformance with this International Standard shall include a statement listing any other International Optical Disk Cartridge Standard supported by the system for which conformance is claimed. This statement shall specify the number of the standard(s), including, where appropriate, the ODC Type(s), or the Types of side, and whether support includes reading only or both reading and writing.

3 Normative reference

The following standard contains provisions which, through reference in this text, constitute provisions of this International Standard. At the time of publication, the edition indicated was valid. All standards are subject to revision, and parties to agreements based on this International Standard are encouraged to investigate the possibility of applying the most recent edition of the standard indicated below. Members of IEC and ISO maintain registers of currently valid International Standards.

IEC 950:1991, Safety of information technology equipment, including electrical business equipment.