Information technology — Open Systems Interconnection — Network service definition

Technologies de l’information — Interconnexion des systèmes ouverts — Définition du service de réseau
CONTENTS

SECTION 1 – GENERAL ... 1
1 Scope .. 1
2 Normative references .. 1
 2.1 Identical Recommendations | International Standards ... 1
 2.2 Additional references .. 2
3 Definitions .. 2
 3.1 Basic reference model definitions .. 2
 3.2 Service conventions definitions .. 3
 3.3 Network Service definitions ... 3
 3.4 Network addressing definitions .. 3
 3.5 Network layer architecture definitions .. 4
4 Abbreviations .. 4
5 Conventions .. 5
 5.1 General conventions ... 5
 5.2 Parameters ... 5
 5.3 NC end-point identification convention .. 5
6 Overview and general characteristics ... 5
7 Types and classes of Network Service ... 6

SECTION 2 – DEFINITION OF THE CONNECTION-MODE SERVICE .. 6
8 Features of the connection-mode Network Service .. 6
9 Model of the connection-mode Network Service ... 7
 9.1 Model of the connection-mode Network Layer Service ... 7
 9.2 Model of a Network Connection ... 7
10 Quality of the connection-mode Network Service ... 11
 10.1 Determination of QOS ... 11
 10.2 Definition of QOS-parameters ... 12
11 Sequence of primitives .. 15
 11.1 Relation of primitives at the two NC end-points .. 15
 11.2 Sequence of primitives at one NC end-point ... 15
12 Connection establishment phase ... 18
 12.1 Function ... 18
 12.2 Types of primitives and parameters ... 18
 12.3 Sequence of primitives .. 26
13 Connection release phase .. 26
 13.1 Function ... 26
 13.2 Types of primitive and parameters ... 27
 13.3 Sequence of primitives when releasing an established NC ... 28
 13.4 Sequence of primitives in an NS user rejection of an NC establishment attempt.................... 29
 13.5 Sequence of primitives in an NS provider rejection of an NC establishment attempt................ 29
14 Data transfer phase .. 30
 14.1 Data transfer ... 30
 14.2 Receipt confirmation service ... 31
 14.3 Expedited data transfer service ... 32
 14.4 Reset service ... 33

SECTION 3 – DEFINITION OF THE CONNECTIONLESS-MODE SERVICE .. 36
15 Features of the connectionless-mode Network Service ... 36
16 Model of the connectionless-mode Network Service ... 36
 16.1 Model of the connectionless-mode Network Layer Service ... 36
 16.2 Model of a network connectionless-mode transmission ... 36
17 Quality of the connectionless-mode Network Service ... 38
17.1 Determination of QOS .. 38
17.2 Definition of network connectionless-mode QOS-parameters .. 38
17.3 Route selection considerations ... 39
18 Sequence of primitives .. 40
19 Data transfer .. 40
19.1 Function ... 40
19.2 Types of primitives and parameters ... 41
19.3 Sequence of primitives ... 41
Annex A – Network Layer Addressing .. 43
A.1 General ... 43
A.2 Scope ... 43
A.3 Concepts and terminology ... 43
A.4 Principles for creating the OSI Network addressing scheme .. 46
A.5 Network address definition ... 47
A.6 Character based DSP allocation ... 54
A.7 Reference publication formats .. 55
A.8 Network entity titles ... 55
Annex B – Rationales for the material in Annex A ... 56
B.1 IDI formats (see A.5.2.1.2) ... 56
B.2 Reservation of AFI values 00-F and FF (see Table A.1) .. 57
B.3 Derivation of the preferred encodings (see A.5.3) .. 57
Annex C – Facilities for conveying service characteristics in the connectionless-mode Network Service .. 58
C.1 Introduction ... 58
C.2 Function ... 58
C.3 Types of primitives and parameters ... 58
C.4 Service characteristics .. 59
C.5 Types of primitives and parameters ... 59
Foreword

ISO (the International Organization for Standardization) and IEC (the International Electrotechnical Commission) form the specialized system for worldwide standardization. National bodies that are members of ISO or IEC participate in the development of International Standards through technical committees established by the respective organization to deal with particular fields of technical activity. ISO and IEC technical committees collaborate in fields of mutual interest. Other international organizations, governmental and non-governmental, in liaison with ISO and IEC, also take part in the work. In the field of information technology, ISO and IEC have established a joint technical committee, ISO/IEC JTC 1.

International Standards are drafted in accordance with the rules given in the ISO/IEC Directives, Part 3.

The main task of the joint technical committee is to prepare International Standards. Draft International Standards adopted by the joint technical committee are circulated to national bodies for voting. Publication as an International Standard requires approval by at least 75 % of the national bodies casting a vote.

Attention is drawn to the possibility that some of the elements of this International Standard may be the subject of patent rights. ISO and IEC shall not be held responsible for identifying any or all such patent rights.

ISO/IEC 8348 was prepared by Joint Technical Committee ISO/IEC JTC 1, Information technology, Subcommittee SC 6, Telecommunications and information exchange between systems, in collaboration with ITU-T. The identical text is published as ITU-T Rec. X.213.

This third edition cancels and replaces the second edition (ISO/IEC 8348:1996), which has been technically revised. It also incorporates Amendment 1:1998 and Amendment 2:2002.

Annex A forms a normative part of this International Standard. Annexes B and C are for information only.
Introduction

This Recommendation | International Standard is one of a set of Recommendations and International Standards produced to facilitate the interconnection of computer systems. It is related to other Recommendations and International Standards in the set as defined by the Reference Model of Open Systems Interconnection (OSI). The OSI Reference Model (ITU-T Rec. X.200 | ISO/IEC 7498-1) subdivides the area of standardization for interconnection into a series of layers of specification, each of a manageable size.

This Recommendation | International Standard defines the Service provided by the Network Layer to the Transport Layer at the boundary between the Network and Transport Layers of the Reference Model. It provides for the designers of Transport protocols a definition of the Network Service existing to support the Transport protocol and for the designers of Network protocols a definition of the services to be made available through the action of the Network protocol over the underlying service. This relationship is illustrated in Figure 0.

The use of the word "Network" to name the "Network" Layer of the OSI Reference Model should be distinguished from the use of the word "network" to denote a communications network as conventionally understood. To facilitate this distinction, the term "subnetwork" is used for a collection of physical equipment, commonly called a "network" (see Rec. X.200 | ISO/IEC 7498-1). Subnetworks may be either public networks or privately supplied networks. In the case of public networks, their properties may be determined by separate Recommendations such as CCITT Rec. X.21 for a circuit-switched network or ITU-T Rec. X.25 for a packet-switched network.

Throughout the set of OSI Recommendations and International Standards the term "Service" refers to the abstract capability provided by one layer of the OSI Reference Model to the layer above it. Thus, the Network Service defined in this Recommendation | International Standard is a conceptual architectural Service, independent of administrative divisions.

NOTE – It is important to distinguish the specialized use of the term "Service" within the set of OSI Recommendations and International Standards from its use elsewhere to describe the provision of a service by an organization (such as the provision of a service, as defined in other Recommendations, by an Administration).

Any particular subnetwork may or may not support the OSI Network Service. The OSI Network Service may be provided by a combination of one or more subnetworks and optional additional functions between or outside these subnetworks.
SECTION 1 – GENERAL

1 Scope

This Recommendation | International Standard defines the OSI Network Service in terms of:

a) the primitive actions and events of the Service;
b) the parameters associated with each primitive action and event, and the form which they take;
c) the interrelationship between, and the valid sequences of, these actions and events.

The principal objectives of this Recommendation | International Standard are:

1) To specify the characteristics of a conceptual Network Service and thus, supplement the Reference Model in guiding the development of Network Layer protocols.

2) To encourage convergence of the capabilities offered by providers of subnetworks.

3) To provide a basis for the individual enhancement of existing heterogeneous subnetworks to a common subnetwork-independent Network Service to enable them to be concatenated for the purpose of providing global communication. (Such concatenation may involve optional additional functions which are not defined in this Recommendation | International Standard.) A definition of the quality of service is an important element of this Recommendation | International Standard.

4) To provide a basis for the development and implementation of subnetwork-independent Transport Layer protocols decoupled from the variability of underlying public and private subnetworks and their specific interface requirements.

This Recommendation | International Standard does not specify individual implementations or products nor does it constrain the implementation of entities and interfaces within a system.

There is no conformance of equipment to this Recommendation | International Standard. Instead, conformance is achieved through implementation of conforming OSI Network protocols which fulfil the Network Service defined in this Recommendation | International Standard.

2 Normative references

The following Recommendations and International Standards contain provisions which, through reference in this text, constitute provisions of this Recommendation | International Standard. At the time of publication, the editions indicated were valid. All Recommendations and Standards are subject to revision, and parties to agreements based on this Recommendation | International Standard are encouraged to investigate the possibility of applying the most recent edition of the Recommendations and Standards listed below. Members of the IEC and ISO maintain registers of currently valid International Standards. The Telecommunication Standardization Bureau of the ITU maintains a list of currently valid ITU-T Recommendations.

2.1 Identical Recommendations | International Standards

2.2 Additional references

- CCITT Recommendation T.50 (1992), *International Reference Alphabet (IRA) (Formerly International Alphabet No. 5 or IA5) – Information technology – 7-bit coded character set for information interchange*.
- ITU-T Recommendation X.300 (1996), *General principles for interworking between public networks and between public networks and other networks for the provision of data transmission services*.
- ISO 2375:1985, *Data processing – Procedure for registration of escape sequences*.
- Internet Standard 2, *Assigned Numbers*.
- IETF RFC 1888 (1996), *OSI NSAPs and IPv6*.