Information technology —
Telecommunications and information exchange between systems — Local and metropolitan area networks — Specific requirements —

Part 2:
Logical link control

Technologies de l'information — Télécommunications et échange d'information entre systèmes — Réseaux locaux et métropolitains — Exigences spécifiques —

Partie 2: Contrôle de liaison logique
Abstract: This standard is part of a family of standards for local area networks (LANs) and metropolitan area networks (MANs) that deals with the physical and data link layers as defined by the ISO Open Systems Interconnection Basic Reference Model. The functions, features, protocol, and services of the Logical Link Control (LLC) sublayer, which constitutes the top sublayer in the data link layer of the ISO/IEC 8802 LAN protocol, are described. The services required of, or by, the LLC sublayer at the logical interfaces with the network layer, the medium access control (MAC) sublayer, and the LLC sublayer management function are specified. The protocol data unit (PDU) structure for data communication systems is defined using bit-oriented procedures, as are three types of operation for data communication between service access points. In the first type of operation, PDUs are exchanged between LLCs without the need for the establishment of a data link connection. In the second type of operation, a data link connection is established between two LLCs prior to any exchange of information-bearing PDUs. In the third type of operation, PDUs are exchanged between LLCs without the need for the establishment of a data link connection, but stations are permitted to both send data and request the return of data simultaneously.

Keywords: local area networks, protocols; logical link control
Information technology—
Telecommunications and information exchange between systems—
Local and metropolitan area networks—
Specific requirements—

Part 2: Logical Link Control

Sponsor
LAN MAN Standards Committee of the IEEE Computer Society

ISO (the International Organization for Standardization) and IEC (the International Electrotechnical Commission) form the specialized system for worldwide standardization. National bodies that are members of ISO or IEC participate in the development of International Standards through technical committees established by the respective organization to deal with particular fields of technical activity. ISO and IEC technical committees collaborate in fields of mutual interest. Other international organizations, governmental and non-governmental, in liaison with ISO and IEC, also take part in the work.

In the field of information technology, ISO and IEC have established a joint technical committee, ISO/IEC JTC 1. Draft International Standards adopted by the joint technical committee are circulated to national bodies for voting. Publication as an International Standard requires approval by at least 75% of the national bodies casting a vote.

International Standard ISO/IEC 8802-2 was prepared by Joint Technical Committee ISO/IEC JTC 1, Information technology, Subcommittee SC 6, Telecommunications and information exchange between systems.

This third edition cancels and replaces the second edition (ISO/IEC 8802-2:1994), which has been technically revised. It also incorporates Amendment 3:1995.

ISO/IEC 8802 consists of the following parts, under the general title Information technology — Telecommunications and information exchange between systems — Local and metropolitan area networks — Specific requirements:

— Part 1: Overview of Local Area Network Standards
— Part 2: Logical link control
— Part 3: Carrier sense multiple access with collision detection (CSMA/CD) access method and physical layer specifications
— Part 4: Token-passing bus access method and physical layer specifications
— Part 5: Token ring access method and physical layer specifications
— Part 6: Distributed Queue Dual Bus (DQDB) access method and physical layer specifications
— Part 9: Integrated Services (IS) LAN Interface at the Medium Access Control (MAC) and Physical (PHY) Layers
 Part 11: Wireless LAN Medium Access Control (MAC) and Physical Layer (PHY) specifications
— Part 12: Demand-priority access method, physical layer and repeater specifications

Annexes A and E form an integral part of this part of ISO/IEC 8802. Annexes B to D are for information only.

This International Standard is part of a family of International Standards for Local and Metropolitan Area Networks. The relationship between this International Standard and the other members of the family is shown below. (The numbers in the figure refer to ISO/IEC Standard numbers.)

<table>
<thead>
<tr>
<th>8802-1 Overview</th>
<th>8802-2 Logical Link Control</th>
</tr>
</thead>
<tbody>
<tr>
<td>8802-3 Medium Access</td>
<td>8802-4 Medium Access</td>
</tr>
<tr>
<td>8802-3 Physical</td>
<td>8802-5 Medium Access</td>
</tr>
<tr>
<td>8802-5 Physical</td>
<td>8802-6 Medium Access</td>
</tr>
<tr>
<td>8802-6 Physical</td>
<td>8802-9 Medium Access</td>
</tr>
<tr>
<td>8802-9 Physical</td>
<td>8802-11 Medium Access</td>
</tr>
<tr>
<td>8802-11 Physical</td>
<td>8802-12 Medium Access</td>
</tr>
<tr>
<td>Data Link Layer</td>
<td>Physical Layer</td>
</tr>
</tbody>
</table>

This family of International Standards deals with the Physical and Data Link layers as defined by the ISO/IEC Open Systems Interconnection (OSI) Basic Reference Model (ISO/IEC 7498-1 : 1994). The access standards define seven types of medium access technologies and associated physical media, each appropriate for particular applications or system objectives. Other types are under investigation.

The International Standards defining the access technologies are as follows:

a) ISO/IEC 8802-3, utilizing carrier sense multiple access with collision detection (CSMA/CD) as the access method.
b) ISO/IEC 8802-4, utilizing token passing bus as the access method.
c) ISO/IEC 8802-5, utilizing token passing ring as the access method.
d) ISO/IEC 8802-6, utilizing distributed queuing dual bus as the access method.
e) ISO/IEC 8802 9, a unified access method offering integrated services for backbone networks.
f) ISO/IEC DIS 8802-11, a wireless LAN utilizing carrier sense multiple access with collision avoidance (CSMA/CA) as the access method.
g) ISO/IEC DIS 8802-12, utilizing Demand Priority as the access method.

ISO/IEC 8802-2, Logical Link Control, is used in conjunction with the medium access standards to provide the data link layer service to network layer protocols.

ISO/IEC 15802-1, Medium Access Control (MAC) service definition, specifies the characteristics of the common MAC Service provided by all IEEE 802 LAN MACs. The service is defined in terms of primitives that can be passed between peer service users, their parameters, their interrelationship and valid sequences, and the associated events of the service.

ISO/IEC 15802-2, LAN/MAN Management, defines an OSI management-compatible architecture, and services and protocol elements for use in a LAN/MAN environment for performing remote management.

ISO/IEC 10038, Media Access Control (MAC) bridges, specifies an architecture and protocol for the interconnection of IEEE 802 LANs below the level of the logical link control protocol (to be renumbered 15802-3).

ISO/IEC 15802-4, System Load Protocol, specifies a set of services and protocol for those aspects of management concerned with the loading of systems on IEEE 802 LANs.

ISO/IEC 15802-5, Remote Media Access Control (MAC) bridging, specifies extensions for the interconnection, using non-LAN communication technologies, of geographically separated IEEE 802 LANs below the level of the logical link control protocol.

IEEE Standards documents are developed within the Technical Committees of the IEEE Societies and the Standards Coordinating Committees of the IEEE Standards Board. Members of the committees serve voluntarily and without compensation. They are not necessarily members of the Institute. The standards developed within IEEE represent a consensus of the broad expertise on the subject within the Institute as well as those activities outside of IEEE that have expressed an interest in participating in the development of the standard.

Use of an IEEE Standard is wholly voluntary. The existence of an IEEE Standard does not imply that there are no other ways to produce, test, measure, purchase, market, or provide other goods and services related to the scope of the IEEE Standard. Furthermore, the viewpoint expressed at the time a standard is approved and issued is subject to change brought about through developments in the state of the art and comments received from users of the standard. Every IEEE Standard is subjected to review at least every five years for revision or reaffirmation. When a document is more than five years old and has not been reaffirmed, it is reasonable to conclude that its contents, although still of some value, do not wholly reflect the present state of the art. Users are cautioned to check to determine that they have the latest edition of any IEEE Standard.

Comments for revision of IEEE Standards are welcome from any interested party, regardless of membership affiliation with IEEE. Suggestions for changes in documents should be in the form of a proposed change of text, together with appropriate supporting comments.

Interpretations: Occasionally questions may arise regarding the meaning of portions of standards as they relate to specific applications. When the need for interpretations is brought to the attention of IEEE, the Institute will initiate action to prepare appropriate responses. Since IEEE Standards represent a consensus of all concerned interests, it is important to ensure that any interpretation has also received the concurrence of a balance of interests. For this reason IEEE and the members of its technical committees are not able to provide an instant response to interpretation requests except in those cases where the matter has previously received formal consideration.

Comments on standards and requests for interpretations should be addressed to:

Secretary, IEEE Standards Board
445 Hoes Lane
P.O. Box 1331
Piscataway, NJ 08855-1331
USA

Note: Attention is called to the possibility that implementation of this standard may require use of subject matter covered by patent rights. By publication of this standard, no position is taken with respect to the existence or validity of any patent rights in connection therewith. The IEEE shall not be responsible for identifying patents for which a license may be required by an IEEE standard or for conducting inquiries into the legal validity or scope of those patents that are brought to its attention.

Authorization to photocopy portions of any individual standard for internal or personal use is granted by the Institute of Electrical and Electronics Engineers, Inc., provided that the appropriate fee is paid to Copyright Clearance Center. To arrange for payment of licensing fee, please contact Copyright Clearance Center, Customer Service, 222 Rosewood Drive, Danvers, MA 01923 USA; (508) 750-8400. Permission to photocopy portions of any individual standard for educational classroom use can also be obtained through the Copyright Clearance Center.

(This introduction is not a part of ANSI/IEEE Std 802.2, 1998 Edition or of ISO/IEC 8802-2 : 1998.)

This standard is part of a family of standards for local and metropolitan area networks. The relationship between the standard and other members of the family is shown below. (The numbers in the figure refer to IEEE standard numbers.)

This family of standards deals with the Physical and Data Link layers as defined by the International Organization for Standardization (ISO) Open Systems Interconnection (OSI) Basic Reference Model (ISO/IEC 7498-1 : 1994). The access standards define seven types of medium access technologies and associated physical media, each appropriate for particular applications or system objectives. Other types are under investigation.

The standards defining the technologies noted above are as follows:

- IEEE Std 802
 Overview and Architecture. This standard provides an overview to the family of IEEE 802 Standards.

- ANSI/IEEE Std 802.1R and 802.1k
 LAN/MAN Management. Defines an OSI management-compatible architecture, and services and protocol elements for use in a LAN/MAN environment for performing remote management.

- ANSI/IEEE Std 802.1D
 Media Access Control (MAC) Bridges. Specifies an architecture and protocol for the interconnection of IEEE 802 LANs below the MAC service boundary.

- ANSI/IEEE Std 802.1E
 System Load Protocol. Specifies a set of services and protocol for those aspects of management concerned with the loading of systems on IEEE 802 LANs.

- ANSI/IEEE Std 802.1G
 Remote Media Access Control (MAC) Bridging. Specifies extensions for the interconnection, using non-LAN communication technologies, of geographically separated IEEE 802 LANs below the level of the logical link control protocol.

- ANSI/IEEE Std 802.2
 Logical Link Control

- ANSI/IEEE Std 802.3
 CSMA/CD Access Method and Physical Layer Specifications

* Formerly IEEE Std 802.1A.

- ANSI/IEEE Std 802.6 [ISO/IEC 8802-6] *Distributed Queue Dual Bus Access Method and Physical Layer Specifications*

- ANSI/IEEE Std 802.9 [ISO/IEC 8802-9] *Integrated Services (IS) LAN Interface at the Medium Access Control (MAC) and Physical (PHY) Layers*

- ANSI/IEEE Std 802.10 *Interoperable LAN/MAN Security*

- IEEE Std 802.11 [ISO/IEC DIS 8802-11] *Wireless LAN Medium Access Control (MAC) and Physical Layer Specifications*

In addition to the family of standards, the following is a recommended practice for a common Physical Layer technology:

- IEEE Std 802.7 *IEEE Recommended Practice for Broadband Local Area Networks*

The following additional working group has authorized standards projects under development:

- IEEE 802.14 *Standard Protocol for Cable-TV Based Broadband Communication Network*

Conformance test methodology

An additional standards series, identified by the number 1802, has been established to identify the conformance test methodology documents for the 802 family of standards. Thus the conformance test documents for 802.3 are numbered 1802.3.

This standard contains state-of-the-art material. The area covered by this standard is undergoing evolution. Revisions are possible within the next few years to clarify existing material, to correct possible errors, and to incorporate new related material. Information on the current revision state of this and other IEEE 802 standards may be obtained from

Secretary, IEEE Standards Board
445 Hoes Lane
P.O. Box 1331
Piscataway, NJ 08855-1331
USA

IEEE 802 committee working documents are available from

IEEE Document Distribution Service
AlphaGraphics #35 Attn: P. Thrush
10201 N. 35th Avenue
Phoenix, AZ 85051
USA
Participants

The following individuals were participants in the work of this IEEE Project 802.2 Working Group:

David E. Carlson, Chair

*Principal contributors to Project 802.2 at time of initial approval (1989).
**Members of Project 802.2 at time of 1993 supplements’ approval.
***Members of Project 802.2 at time of 1997 supplements’ approval and reaffirmation of base text.
Additional individuals who made significant contributions were the following:

- Don Andrews
- Phil Arst
- Ron Crane
- Walt Elden
- Atul Garg
- Bryan Hoover
- Andrew Huang
- Tony Lauke
- Andy Luque
- Dan Mallinc
- Jane Munn
- Wendell Nakamine
- Linton Neely
- Dan Pitt
- Robert Printis
- Stephen Soto
- Joshua Weiss

The following persons were on the original balloting committee that approved this document for submission to the IEEE Standards Board:

- William B. Adams
- Kit Athul
- Chih-Tsai Chen
- Michael H. Coden
- Robert S. Crowder
- George S. Caron
- Mitchell Duncan
- John E. Emrich
- John W. Fendrich
- Hal Fults
- Harvey Freeman
- D. G. Gan
- Patrick Gonia
- Ambuj Goya
- Maris Graube
- J. Scott Haugdahl
- Paul L. Hutton
- Raj Jain
- David M. Kollm
- Anthony B. Lake
- Mike Lawler
- Jaiyong Lee
- F. C. Lim
- R. S. Little
- William D. Livingston
- Donald C. Loughry
- Andy J. Luque
- Richard Miller
- Nirode C. Mohanty
- John E. Montague
- Kinji Mori
- David J. Morris
- M. Ravindranath Nayak
- Arne A. Nilsson
- Charles Oesterlecher
- Young Oh
- Udo W. Pooch
- John P. Riganati
- Gary S. Robinson
- Robert Rosenthal
- Floyd Ross
- S. I. Samoylenko
- Julio Gonzalez Sanz
- Norusn Schneiderwind
- D. A. Sheppard
- John Spragins
- Carol M. Stillebroc
- Fred Strauss
- Peter Sugar
- Efstathios D. Sykas
- Daniel Sze
- Nathan Tobol
- L. David Umbaugh
- Thomas A. Varetotli
- James Vorhies
- Don Weir
- Earl J. Whitaker
- George B. Wright
- Oren Yuen

When the IEEE Standards Board approved IEEE Std 802.2 on 17 August 1989, it had the following membership:

Dennis Bodson, Chair

Andrew G. Salem, Secretary

- Arthur A. Blasdell
- Fletcher J. Buckley
- Allen L. Clapp
- James M. Daly
- Stephen R. Dillon
- Donald C. Fleckenstein
- Eugene P. Fogarty
- Jay Forster*
- Thomas L. Hanman
- Kenneth D. Hendrix
- Theodore W. Hisey, Jr.
- John W. Hooch
- David W. Hutchins
- Frank D. Kirschner
- Frank C. Kitanzides
- Joseph L. Koepfinger*
- Edward Lohse
- John E. May, Jr.
- Lawrence V. McCall
- L. Bruce McClung
- Donald T. Michael*
- Richard E. Mosher
- Stig Nilsson
- L. John Rankine
- Gary S. Robinson
- Donald W. Zipse

* Member emeritus

IEEE Std 802.2-1989 was approved by the American National Standards Institute on 12 January 1990.
The following persons were on the balloting committee that approved supplements 802.2a, 802.2b, 802.2d, and 802.2e for submission to the IEEE Standards Board:

William B. Adams
Don Aelmore
Hasan Alkhatib
Kit Athul
Yong Myung Baeg
Alan L. Bridges
Richard Caasi
George Carson
Robert A. Ciampa
Michael H. Coden
Robert Crowder
Jose A. Cueto
Andrew M. Dunn
Philip H. Easlow
Changxin Fan
John W. Fendrich
Harvey A. Freeman
Robert Gagliano
Patrick Gouia
Maris Graube
Craig Guarnieri
Paul L. Hutton
Raj Jain
Jens Kolind

Peter Komerup
Anthony B. Lake
Jai Yong Lee
Michael E. Lee
Lewis F. Leinenweber
F. C. Lim*
Randolph S. Little
Donald C. Loughry
Nam C. Low
Andy J. Luque
Peter Martini
William McDonald
Darrell B. McIndoe
Richard H. Miller
C. B. Madhar Mishra
Wen Hsien Lim Moh
John E. Montague
Kinji Mori
Gerald Moseley
Donal O'Mahony
Charles Oestereicher
Art J. Pina
Udo W. Pouch

David Propp
Andris Putnins
Thad L. D. Regulinski
Gary S. Robinson
Philip T. Robinson
Julio Gonzalez Sanz
Norman Schneidewind
Gregory D. Schumacher
Jeffrey R. Schwab
Don ald A. Sheppard
Fred J. Strauss
Elstathiois Sykas
Ahmed N. Tantawi
Geoffrey O. Thompson
Robert Tripi
L. David Umbaugh
James T. Vorhies
Donald F. Wier
Raymond Weuig
Earl J. Whitaker
Paul A. Willis
Jen-Kun Yang
Oren Yuen
Stephen Zebrowski

*Did not vote on 802.2a.

Those who participated in the development of IEEE Std 802.5p were as follows:

Robert A. Donnan, Chair, 802.5
Phillip Emer, Chair, Route Determination Entity Task Group

Floyd Backes
Robert Barrett
Stephen Belisle
Laura Bridge
Fred Burg
Dave Carlson
Claude A Cartee
Alan Chambers
Johnny A. Chang
Thomas Coradetti
Michael Coy
Robert Dalgleish
Roy C. Dixon
Rick Downs
Candace C. Elder
Richard Fox
William T. Futral
Lionel Gerecz
Harry Gold
Larry Green
Tom Gulick
Sharam Hakimi
David Hammond
Charles F. Hanes
John Hart
Douglas Ingraham
Tony Jeffree
Hal Keen
Choon Lee
Chao yu Liang
George Lin
Arthur Miller
John E. Montague
Lee Netzel
Alan Oppenheimer
Richard Pattie
John Pickens
Dennis Picker
Daniel A. Pitt
Venkat Prasad
Kirk Preiss
Jim Ragsdale
Everett O. Rigsbee III

Phil Robinson
Paul Rosenblum
Bob Ross
Floyd Ross
Jacques Roth
Chris Roussel
Mick Seaman
Himanshu Shah
Richard Siebert
Somsuhra Siddar
W. Earl Smith
Magnus Stallknecht
Richard Sweatt
Andre Szczepanek
Peter Tan
Jeff Tong
Ric Walker
Chang-Jung Wang
Robert Wu
Amnon Yacoby
Carolyn Zimmer
The following persons were on the balloting committee that approved supplement 802.5p for submission to the IEEE Standards Board:

William B. Adams
Ian F. Akyildiz
Bernhard Albert
Hasan S. Alkhattab
Pat J. Angarano
Kit Asbuh
William E. Ayen
Tim Batten
George Carson
George C. Chuachis
Robert A. Ciampa
Robert Crowder
Robert Donnan
John Emrich
Philip H. Enslenw
John W. Fendrich
Harvey A. Freeman
Robert Gagliano
Isaac Ganshah
Patrick Gonta
Scott J. Haugdahl
Richard J. Iliff
Raj Jain
Gary C. Kesseler
Farrokh Khatibi
Youngbum Kim
Randolph S. Little
Donald C. Loughry
Joseph F. P. Luhukay
William McDonald
David S. Millman
Kiagi Mori
David J. Morris
Ellis S. Nolley
Charles Ostereicher
Jeffrey L. Paige
Art J. Pina
R. I. Prince
Brian Ramelson
Philip T. Robinson
Edouard Y. Rocher
Daniel Rosich
Floyd E. Ross
Julio Gonzalez Sanz
Manoj Kumar Saxena
Gregory D. Schumacher
Donald A. Sheppard
Robert K. Southard
Fred J. Strauss
Elstathois Sykas
Daniel Sze
Hao Tang
Patricia Thaler
Geoffrey O. Thompson
Mark-Rene Uchida
David L. Umbaugh
James T. Vorhies
Donald F. Weir
Raymond Wenig
Paul A. Willis
Onen Yue
Stephen Zebrowski

When the IEEE Standards Board approved Std 802.5p on 15 September 1993, and Stds 802.2a, 802.2b, 802.2d, and 802.2e on 2 December 1993, it had the following membership:

Wallace S. Read, Chair
Andrew G. Salem, Secretary
Donald C. Loughry, Vice Chair

- Gilles A. Baril
- José A. Berrios de la Paz
- Clyde R. Camp
- Donald C. Fleckenstein
- Jay Forster*
- David F. Franklin
- Ramiro Garcia
- Donald N. Heitman
- Jim Isaak
- Ben C. Johnson
- Walter J. Kaulus
- Lorraine C. Kevra
- E. G. “Al” Krieter
- Ivor N. Knight
- Joseph L. Knepleinger*
- D. N. “Jim” Logothetis
- Don T. Michael*
- Marco W. Migliaro
- L. John Rankine
- Arthur K. Reilly
- Ronald H. Reimer
- Gary S. Robinson
- Leonard L. Tripp
- Donald W. Zipse

*Member Emeritus

Also included are the following nonvoting IEEE Standards Board liaisons:

- Satish K. Aggarwal
- James Beall
- Richard B. Engelman
- David E. Soffrin
- Stanley I. Warshaw

Kristin Dittmann
IEEE Standards Project Editor

The following persons were on the balloting committees of 802.2c, 802.2f, and 802.2h. The superscripted letters c, f, and h, corresponding to the supplement letter, indicate that the individual balloted only those documents. Those listed without any superscripted letter balloted all three supplements.

William B. Adams
Don Aelmorec
Paul D. Amerc
Kit Athulacf
William E. Ayen
Thomas W. Baileycf
Frederic Bauchot
Manuel J. Betancorcf
Kathleen L. Briggs
Peter K. Campbell
James T. Carlo
David F. Carlson
Altam M. Claubbers
Frederick N. Chasecf
Robert S. Crowder
Edward A. Dunlopc
Sooraj K. Kuttaa
Paul S. Eastmancf
Philip H. Enslow
Changxin Fan
John W. Fendrich
Michael A. Fischer
Harvey A. Freeman
Robert J. Gagliano
D. G. Ganth
Gautam Garai
Harry Gold
Julio Gonzalez Sanzf
Maris Graubec
Richard J. Iliff
Neil A. Jarvisth
Henry D. Kerncf
Peter M. Kelly
Gary C. Kessler
Stephen Barton Kruger
William G. Lane
Larse M. Leach
Randolph S. Little
Robert D. Love
Joseph G. Maleyc
Richard McBride
John L. Messengerth
Bennett Meyer
Richard H. Miller
David S. Millmanb
Warren Monroe
John E. Montague
David J. Morris
James R. Moulton
Wayne D. Moyer
Bongnam Nohc
Charles Oesterreichercf
Robert O Harith
Donal O'Mahonyth
Ingo Ottensmeierth
Roger Pandzic

Ronald C. Petersen
Thomas L. Pinneyf
David L. Propp
Vikram Punth
Edouard Y. Rocher
James W. Romlein
Floyd E. Ross
Michael Salzman
S. I. Samoylenkof

When the IEEE Standards Board reaffirmed IEEE Std 802.2 and approved IEEE Stds 802.2c, 802.2f, and 802.2h on 16 September 1997, it had the following membership:

Donald C. Loughry, Chair

Richard J. Holleman, Vice Chair

Andrew G. Salem, Secretary

Clyde R. Camp
Stephen L. Diamond
Harold E. Epstein
Donald C. Fleckenstein
Jay Forstera
Thomas F. Garrett
Donald N. Heirman
Jim Isaak
Ben C. Johnson
Lowell Johnson
Robert Kennelly
E. G. "Al" Kiener
Joseph L. Koopfingera
Stephen R. Lambert
Lawrence V. McCall
L. Bruce McClung
Marco W. Migliaro
Louis-François Pau
Gerald H. Petersen
John W. Pope
Jose R. Ramos
Ronald H. Reimer
Ingo Rüsch
John S. Ryan
Chee Kiow Tan
Howard L. Wolfman

*Member Emeritus

Also included are the following nonvoting IEEE Standards Board liaisons:

Satish K. Aggarwal
Alan H. Cookson

Kristin Dittmann

IEEE Standards Project Editor

Contents

1. **Overview** ... 1
 1.1 Scope and purpose .. 1
 1.2 Standards compatibility .. 3
 1.3 Normative references .. 3
 1.4 Acronyms and definitions ... 5
 1.5 Conformance .. 11

2. **LLC sublayer service specifications** .. 12
 2.1 General .. 12
 2.2 Network layer/LLC sublayer interface service specification ... 14
 2.3 LLC sublayer/MAC sublayer interface service specification ... 35
 2.4 LLC sublayer/LLC sublayer management function interface service specification 38

3. **LLC PDU structure** .. 39
 3.1 General .. 39
 3.2 LLC PDU format .. 39
 3.3 Elements of the LLC PDU ... 39

4. **LLC types and classes of procedures** .. 42
 4.1 General .. 42
 4.2 Classes of LLC (conformance clause) .. 43
 4.3 Support of route determination entity (RDE) (conformance clause) .. 45

5. **LLC elements of procedure** ... 46
 5.1 General .. 46
 5.2 Control field formats .. 46
 5.3 Control field parameters ... 47
 5.4 Commands and responses .. 50

6. **LLC description of the Type 1 procedures** .. 62
 6.1 Mode of operation .. 62
 6.2 Procedure for addressing ... 62
 6.3 Procedure for the use of the P/F bit ... 67
 6.4 Procedures for logical data link setup and disconnection .. 62
 6.5 Procedures for information transfer ... 62
 6.6 Uses of the XID command PDU and response PDU ... 63
 6.7 Uses of the TEST command PDU and response PDU .. 63
 6.8 List of logical data link parameters .. 64
 6.9 Precise description of the Type 1 procedures ... 64

7. **LLC description of the Type 2 procedures** ... 73
 7.1 Modes ... 73
 7.2 Procedure for addressing ... 74
 7.3 Procedures for the use of the P/F bit .. 74

Copyright © 1998 IEEE. All rights reserved.
8. LLC description of the Type 3 procedures .. 130

9. LLC RDE procedures ... 130

10. LLC sublayer managed objects .. 154

ANNEX

Annex A (normative) Protocol Implementation Conformance Statement (PICS) proforma ... 199

Annex B (informative) Relationship between LLC Type 3 and PROWAY (IEC 60955:1989) ... 223

Annex C (informative) LLC flow control techniques for bridged LANs 228

Annex D (informative) Subnetwork access protocol support .. 230

Annex E (normative) Allocation of object identifier values ... 231
Information technology—
Telecommunications and information exchange between systems—
Local and metropolitan area networks—
Specific requirements

Part 2: Logical Link Control

1. Overview

1.1 Scope and purpose

This International Standard is one of a set of international standards produced to facilitate the interconnection of computers and terminals on a Local Area Network (LAN). It is related to the other international standards by the Reference Model for Open Systems Interconnection (OSI).

NOTE—The exact relationship of the layers described in this International Standard to the layers defined by the OSI Reference Model is under study.

This International Standard describes the functions, features, protocol, and services of the Logical Link Control (LLC) sublayer in the ISO/IEC 8802 LAN Protocol. The LLC sublayer constitutes the top sublayer in the data link layer (see figure 1) and is common to the various medium access methods that are defined and supported by the ISO/IEC 8802 activity. Separate International Standards describe each medium access method individually and indicate the additional features and functions that are provided by the Medium Access Control (MAC) sublayer in each case to complete the functionality of the data link layer as defined in the LAN architectural reference model.

This International Standard describes the LLC sublayer service specifications to the network layer (Layer 3), to the MAC sublayer, and to the LLC sublayer management function. The service specification to the network layer provides a description of the various services that the LLC sublayer, plus underlying layers and sublayers, offer to the network layer, as viewed from the network layer. The service specification to the MAC sublayer provides a description of the services that the LLC sublayer requires of the MAC sublayer. These services are defined so as to be independent of the form of the medium access methodology, and of the nature of the medium itself. The service specification to the LLC sublayer management function provides a description of the management services that are provided to the LLC sublayer. All of the above service specifications are given in the form of primitives that represent in an abstract way the logical exchange
of information and control between the LLC sublayer and the identified service function (network layer, MAC sublayer, or LLC sublayer management function). They do not specify or constrain the implementation of entities or interfaces.

This International Standard provides a description of the peer-to-peer protocol procedures that are defined for the transfer of information and control between any pair of data link layer service access points on a LAN. The LLC procedures are independent of the type of medium access method used in the particular LAN.

To satisfy a broad range of potential applications, three types of data link control operation are included (see clause 4). The first type of operation (see clause 6) provides a data link connectionless-mode service across a data link with minimum protocol complexity. This type of operation may be useful when higher layers provide any essential recovery and sequencing services so that these do not need replicating in the data link layer. In addition, this type of operation may prove useful in applications where it is not essential to guarantee the delivery of every data link layer data unit. This type of service is described in this International Standard in terms of “logical data links.” The second type of operation (see clause 7) provides a data-link-connection-mode service across a data link comparable to existing data link control procedures provided in International Standards such as HDLC (see ISO/IEC 13239:1997). This service includes support of sequenced delivery of data link layer data units, and a comprehensive set of data link layer error recovery techniques. This second type of service is described in this International Standard in terms of “data link connections.” The third type of operation (see clause 8) provides an acknowledged-connectionless-mode data unit exchange service, which permits a station to both send data and request the return of data at the same time. Although the exchange service is connectionless, in-sequence delivery is guaranteed for data sent by the initiating station.

This International Standard identifies four distinct “classes” of LLC operation. Class I provides data link connectionless-mode service only. Class II provides data-link-connection-mode service plus data-link-connectionless-mode service. Class III provides acknowledged-connectionless-mode service plus data-link-connectionless-mode service. Class IV provides acknowledged-connectionless-mode service plus data-link-connection-mode service plus data-link-connectionless-mode service. Any one of these classes of operation may be supported.

The basic protocols described herein are peer protocols for use in multistation, multiaccess environments. Because of the multistation, multiaccess environment, it shall be possible for a station to be involved in a multiplicity of peer protocol data exchanges with a multiplicity of different stations over a multiplicity of different logical data links and/or data link connections that are carried by a single physical layer (PHY) over a single physical medium. Each unique to-from pairing at the data link layer shall define a separate logical

1 Information about references can be found in 1.3.
data link or data link connection with separate logical parameters and variables. Except where noted, the
procedures described shall relate to each data link layer logical data link or data link connection separately
and independently from any other logical data link or data link connection that might exist at the stations
involved.

ISO/IEC 10038 : 1993, annex C, provides additional services to allow the MAC service user the ability to
determine and use multiple routes through a bridged LAN. This International Standard specifies the provi-
sion for an optional Route Determination Entity (RDE) within the LLC sublayer. This entity provides for the
discovery and selection of a path (bridged route) for each required data link through the bridged LAN. It
does not preclude the LLC service user from providing its own method of discovery and selection of routes.

To evaluate conformance of a particular implementation, it is necessary to have a statement of which capa-
bilities and options have been implemented. Such a statement is called a Protocol Implementation Conform-
ance Statement (PICS), as defined in ISO/IEC 9646-1 : 1994. This International Standard provides such a
PICS proforma (Annex A) in compliance with the relevant requirements, and in accordance with the relevant

1.2 Standards compatibility

The peer protocol procedures defined in clause 5 utilize some of the concepts and principles, as well as com-
mands and responses, of the balanced data link control procedures known as Asynchronous Balanced Mode
(ABM), as defined in ISO/IEC 14239 : 1997. (The ABM procedures provided the basis upon which the ITU-
T Recommendation X.25 Level 2 LAPB procedures were defined.) The frame structure defined for the data
link layers procedures as a whole is defined in part in clause 3 of this International Standard and in part in
those International Standards that define the various MAC procedures. The combination of a MAC sublayer
address and an LLC sublayer address is unique to each data link layer service access point in the LAN.

NOTE—This division of data link layer addressing space into separate MAC and LLC address fields is not presently a
part of any present ISO data link layer International Standard.

The RDE procedures defined in clause 9 utilize some of the concepts and principles as defined in ISO/IEC
10038 : 1993, annex C.

1.3 Normative references

The following standards contain provisions which, through reference in this text, constitute provisions of
this part of ISO/IEC 8802. At the time of publication, the editions indicated were valid. All standards are
subject to revision, and parties to agreements based on this part of ISO/IEC 8802 are encouraged to investi-
gate the possibility of applying the most recent editions of the standards indicated below. Members of IEC
and ISO maintain registers of currently valid International Standards.

IEC 60955 : 1989, Process data highway, Type C (PROWAY C), for distributed process control systems.

Model—The Basic Model.

Model—Part 4: Management framework.

Copyright © 1998 IFFA. All rights reserved.

ISO/IEC TR 10171:1994, Information technology—Telecommunications and information exchange between systems—List of standard data link layer protocols that utilize high-level data link control (HDLC) classes of procedures and list of standardized XID format identifiers and private parameter set identification values.

ITU-T Recommendation X.25, Interface between data terminal equipment (DTE) and data circuit-terminating equipment (DCE) for terminals operating in the packet mode and connected to public data networks by dedicated circuit.\(^5\)

ITU-T Recommendation X.200, Reference model on open systems interconnection for CCITT applications.

\(^5\)All ITU-T publications are available from the International Telecommunications Union, Sales Section, Place des Nations, CH-1211, Genève 20, Switzerland/Suisse. They are also available in the United States from the U.S. Department of Commerce, Technology Administration, National Technical Information Service (NTIS), Springfield, VA 22161, USA.