Information technology — Security techniques — Digital signature schemes giving message recovery —

Part 2:
Integer factorization based mechanisms

Technologies de l'information — Techniques de sécurité — Schémas de signature numérique rétablissant le message —

Partie 2: Mécanismes basés sur une factorisation entière
Contents

Foreword .. v
Introduction..vi
1 Scope... 1
2 Normative references ... 1
3 Terms and definitions .. 1
4 Symbols and abbreviated terms .. 3
5 Converting between bit strings and integers ... 5
6 Requirements .. 5
7 Model for signature and verification processes .. 7
 7.1 General ... 7
 7.2 Signing a message ... 7
 7.2.1 Overview .. 7
 7.2.2 Message allocation .. 7
 7.2.3 Message representative production .. 8
 7.2.4 Signature production ... 8
 7.3 Verifying a signature .. 8
 7.3.1 Overview .. 8
 7.3.2 Signature opening .. 8
 7.3.3 Message recovery ... 8
 7.3.4 Message assembly ... 8
 7.4 Specifying a signature scheme .. 9
8 Digital signature scheme 1 .. 9
 8.1 General ... 9
 8.2 Parameters .. 9
 8.2.1 Modulus length ... 9
 8.2.2 Trailer field options ... 10
 8.2.3 Capacity .. 10
 8.3 Message representative production .. 10
 8.3.1 Hashing the message .. 10
 8.3.2 Formatting ... 10
 8.4 Message recovery ... 11
9 Digital signature scheme 2 .. 12
 9.1 General ... 12
 9.2 Parameters .. 12
 9.2.1 Modulus length ... 12
 9.2.2 Salt length .. 12
 9.2.3 Trailer field options ... 12
 9.2.4 Capacity .. 13
 9.3 Message representative production .. 13
 9.3.1 Hashing the message .. 13
 9.3.2 Formatting ... 13
 9.4 Message recovery ... 13
10 Digital signature scheme 3 .. 14
Annex A (normative) ASN.1 module .. 15
 A.1 General ... 15
 A.2 Use of subsequent object identifiers .. 17
Annex B (normative) Public key system for digital signature ... 18
B.1 Terms and definitions .. 18
B.2 Symbols and abbreviations ... 18
B.3 Key production .. 19
B.3.1 Public verification exponent ... 19
B.3.2 Secret prime factors and public modulus .. 19
B.3.3 Private signature exponent .. 20
B.4 Signature production function ... 20
B.5 Signature opening function ... 20
B.6 Alternative signature production function ... 21
B.7 Alternative signature opening function ... 21

Annex C (normative) Mask generation function ... 22
C.1 Symbols and abbreviations ... 22
C.2 Requirements ... 22
C.3 Specification ... 22
C.3.1 Parameters ... 22
C.3.2 Mask generation ... 22

Annex D (informative) On hash-function identifiers and the choice of the recoverable length of the message ... 23

Annex E (informative) Examples ... 24
E.1 Examples with public exponent 3 .. 24
E.1.1 Example of key production process ... 24
E.1.2 Examples with total recovery ... 25
E.1.3 Examples with partial recovery ... 31
E.2 Examples with public exponent 2 ... 38
E.2.1 Example of key production process ... 38
E.2.2 Examples with total recovery ... 38
E.2.3 Examples with partial recovery ... 44

Bibliography ... 53
Foreword

ISO (the International Organization for Standardization) and IEC (the International Electrotechnical Commission) form the specialized system for worldwide standardization. National bodies that are members of ISO or IEC participate in the development of International Standards through technical committees established by the respective organization to deal with particular fields of technical activity. ISO and IEC technical committees collaborate in fields of mutual interest. Other international organizations, governmental and non-governmental, in liaison with ISO and IEC, also take part in the work. In the field of information technology, ISO and IEC have established a joint technical committee, ISO/IEC JTC 1.

International Standards are drafted in accordance with the rules given in the ISO/IEC Directives, Part 2.

The main task of the joint technical committee is to prepare International Standards. Draft International Standards adopted by the joint technical committee are circulated to national bodies for voting. Publication as an International Standard requires approval by at least 75% of the national bodies casting a vote.

Attention is drawn to the possibility that some of the elements of this document may be the subject of patent rights. ISO and IEC shall not be held responsible for identifying any or all such patent rights.

ISO/IEC 9796-2 was prepared by Joint Technical Committee ISO/IEC JTC 1, Information technology, Subcommittee SC 27, IT Security techniques.

This third edition cancels and replaces the second edition (ISO/IEC 9796-2:2002), which has been technically revised. It also incorporates the Amendment ISO/IEC 9796-2:2002/Amd.1:2008.

Implementations which comply with ISO/IEC 9796-2 (1st edition) and which use a hash-code of at least 160 bits in length will be compliant with ISO/IEC 9796-2 (3rd edition). Note, however, that implementations complying with ISO/IEC 9796-2 (1st edition) that use a hash-code of less than 160 bits in length will not be compliant with ISO/IEC 9796-2 (3rd edition). Implementations which comply with ISO/IEC 9796-2 (2nd edition) will be compliant with ISO/IEC 9796-2 (3rd edition).

ISO/IEC 9796 consists of the following parts, under the general title Information technology — Security techniques — Digital signature schemes giving message recovery:

— Part 2: Integer factorization based mechanisms
— Part 3: Discrete logarithm based mechanisms

Further parts may follow.
Introduction

Digital signature mechanisms can be used to provide services such as entity authentication, data origin authentication, non-repudiation, and integrity of data. A digital signature mechanism satisfies the following requirements.

⎯ Given the verification key but not the signature key it shall be computationally infeasible to produce a valid signature for any message.

⎯ Given the signatures produced by a signer, it shall be computationally infeasible to produce a valid signature on a new message or to recover the signature key.

⎯ It shall be computationally infeasible, even for the signer, to find two different messages with the same signature.

NOTE 1 Computational feasibility depends on the specific security requirements and environment.

Most digital signature mechanisms are based on asymmetric cryptographic techniques and involve three basic operations:

⎯ a process for generating pairs of keys, where each pair consists of a private signature key and the corresponding public verification key;

⎯ a process that uses the signature key, called the signature process;

⎯ a process that uses the verification key, called the verification process.

There are two types of digital signature mechanism.

⎯ When, for a given signature key, two signatures produced for the same message are identical, the mechanism is said to be non-randomized (or deterministic); see ISO/IEC 14888-1.

⎯ When, for a given message and signature key, each application of the signature process produces a different signature, the mechanism is said to be randomized.

The first and third of the three mechanisms specified in this part of ISO/IEC 9796 are deterministic (non-randomized), whereas the second of the three mechanisms specified is randomized.

Digital signature mechanisms can also be divided into the following two categories:

⎯ When the whole message has to be stored and/or transmitted along with the signature, the mechanism is named a “signature mechanism with appendix” (see ISO/IEC 14888).

⎯ When the whole message, or part of it, can be recovered from the signature, the mechanism is named a “signature mechanism giving message recovery” [see ISO/IEC 9796 (all parts)].

NOTE 2 Any signature mechanism giving message recovery, for example the mechanisms specified in ISO/IEC 9796 (all parts), can be converted to give a digital signature with appendix. This can be achieved by applying the signature mechanism to a hash-code derived as a function of the message. If this approach is employed, then all parties generating and verifying signatures must agree on this approach, and must also have a means of unambiguously identifying the hash-function to be used to generate the hash-code from the message.

The mechanisms specified in ISO/IEC 9796 (all parts) give either total or partial recovery, with the objective of reducing storage and transmission overhead. If the message is short enough, then the entire message can be
included in the signature, and recovered from the signature in the verification process. Otherwise, a part of the message can be included in the signature, and the remainder stored and/or transmitted along with the signature.

The mechanisms specified in this part of ISO/IEC 9796 use a hash-function for hashing the entire message (possibly in more than one part). ISO/IEC 10118 specifies hash-functions for digital signatures.
Information technology — Security techniques — Digital signature schemes giving message recovery —

Part 2: Integer factorization based mechanisms

1 Scope

This part of ISO/IEC 9796 specifies three digital signature schemes giving message recovery, two of which are deterministic (non-randomized) and one of which is randomized. The security of all three schemes is based on the difficulty of factorizing large numbers. All three schemes can provide either total or partial message recovery.

This part of ISO/IEC 9796 specifies the method for key production for the three signature schemes. However, techniques for key management and for random number generation (as required for the randomized signature scheme) are outside the scope of this part of ISO/IEC 9796.

The first mechanism specified in this part of ISO/IEC 9796 is only applicable for existing implementations, and is retained for reasons of backward compatibility.

2 Normative references

The following referenced documents are indispensable for the application of this document. For dated references, only the edition cited applies. For undated references, the latest edition of the referenced document (including any amendments) applies.

ISO/IEC 10118 (all parts), Information technology — Security techniques — Hash-functions